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ABSTRACT OF THE DISSERTATION

Econometric Analysis of Household Surveys

by
Robert V. Breunig

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 1998
Professor Aman Ullah, Chairperson

Survey data is widely used in economics to draw conclusions about policy and
consumer behavior. A large number of techniques, such as sampling without replacement,
stratified sampling, cluster sampling, and systematic sampling, have been developed, and
are employed (individually or in combination) in the surveys used to gather economic data.
Despite the prevalence of such survey techniques (particularly in the data used by labor
and development economists) relatively little attention has been paid to its analysis.

We show that standard econometric techniques which fail to account for the
survey structure of the data lead to biased and inconsistent estimates. Standard errors
estimated in the usual way will be incorrect, thus inferences drawn from inappropriately
treated survey data may well be inaccurate.

Three distinct areas of interest to applied economists and econometricians are

considered in this paper. After a brief introduction to the history of survey sampling, we
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show through simulation the large bias which arises in estimates of simple parameters such
as means and variances when the sample structure is ignored. Techniques, some of which
are available in the statistics literature, are provided for conducting unbiased estimation
and proper inference.

In the next section, these results are extended to inequality measures. Stratification
and unequal probability sampling are shown to lead to biases of 20% or more in
commonly used inequality measures when the sampling structure is ignored. Methods are
developed for unbiased estimation of inequality measures and these are shown to perform
well in simulation. We provide a method for calculating a “design effect” which can be
used to inflate the usual standard errors for inequality measures to account for clustering
in the data. This method is applied to the Coefficient of Variation, a frequently used
inequality measure. The techniques in this section are applied to survey data on household
income and expenditure from China, Mexico, and Kenya.

In the last section, we consider non-parametric density estimation under stratified
and clustered samples. We develop a weighted, non-parametric density estimator to
account for unequal probability sampling and provide data-based methods for choosing a
new optimal bandwidth parameter based upon the survey structure of the data. These

methods are shown to perform well in simulation for stratified and for clustered data.
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1 INTRODUCTION

The past fifty years have seen a tremendous growth in research in theoretical
and applied econometrics. Particularly in the last twenty years, the explosive growth
of research in econometrics has resulted in the appearance of two distinct sub-fields
within econometrics. New time-series methodologies have been developed in response
to empirical and data issues in macroeconomics and finance. This has led to the cre-
ation of and widespread growth of research in methods to analyze non-stationary data.
conditional heteroscedasticity., high frequency data, and regime switches/structural
breaks to name just a few areas.

Parallel developments have occurred in response to changes in labor economics,
development economics and applied microeconomics. Cross-sectional econometric
methods have evolved to deal with simultaneous equation models and endogeneity
problems, truncated data, discrete data, and self-selection. These theoretical de-
velopments are now widely applied in labor and development economics and have
considerably added to the quality of quantitative analysis.

Despite these developments, econometric inference methods (and this is particu-
larly the case for cross-sectional econometrics) have been confined to the assumption
of data being generated as a simple random sample with replacement, or that the
data are coming from an infinite population, see Johnston (1991), Greene (1993), and

Davidson and MacKinnon (1993). This is certainly an invalid assumption in the case
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of most applied cross-sectional econometrics. The vast majority of applied econo-
metric work in development and labor (as well as in many other areas) uses survey
data which violates the assumption of random sampling from an infinite population.
Surveys are generally conducted on finite populations, which are first subdivided
into many groups, and samples may be drawn using different methods for different
sub-groups. In most cases, population elements enter the sample with unequal prob-
abilities. In addition, commonly used sampling methods introduce large correlation
into cross-sectional data—a problem which most econometricians seem to believe exists
only in time series data.

The use of sampling schemes which differ substantially from random sampling
with replacement (or from an infinite population) has long been a topic of statisti-
cal research. The past four decades have seen an extensive literature on systematic
sampling, stratified random sampling, and cluster sampling, either alone or in combi-
nation. See the now-classic books of Kish (1965), Cochran (1953), and Sukhatme and
Sukhatme (1984) for the early developments in this literature. For a more modern ap-
proach, see Levy and Lemeshow (1991) or Thompson (1992)-both of which are widely
used in statistics courses. An excellent, concise text, though highly mathematical, is
Gourieroux (1981). Two accessible texts for the non-statistician are Kalton (1983)
and Dalenius (1988).

This statistics literature has developed over the past 150 years, prodded on by

questions of data and empirical estimation. We give a brief overview of this history

2
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below. In section 1.3, we will examine some of the most commonly used survey designs
to see how they are implemented in practice. Despite the existence of this literature
in statistics on estimation and inference under various sampling designs, very little
application of these results in econometric analysis has occurred. For economists.
another problem is that the statistics literature has been overwhelmingly concerned
with estimating means and variances under different sampling schemes. The effects
of the survey design on regression, inequality measurement, non-parametric density
and regression estimation, and other parameters of interest to economists have not
been dealt with in the statistics literature. In section 1.4, we will preview the contents
of this paper, where we extend the results from the mean model to other models of

greater interest to economic analysts.
1.1 History

The history of survey sampling can be traced back to the early eighteenth century.
and even earlier-see Hansen (1987), Bellhouse (1988a), and Deaton (1997) for detailed
references. The idea of gathering a sample of data to estimate a population total or
a general model is one that goes back quite far, though the preferred method was
always considered to be total enumeration. (The early French statistician Quetelet
is the first known person to express the view of a complete census being the optimal
sample-see Stigler (1986).)

Stigler (1954) surveys the early use of samples to study consumer behavior. He
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describes how Reverend David Davies, in 1795, and Sir Frederick Morton Eden, in
1797, gathered non-representative samples to study the living conditions of the work-
ing classes and poor in industrial revolution-era England. Another example of such
sample gathering is Engel (1857), who used a non-representative sample of 200 Bel-
gian households gathered by Ducpetiaux to establish that the share of the budget
allocated to food is higher for the poor. One of the first known expositions of the
idea of gatbering sample data to estimate population totals was LaPlace. who was
interested in estimating the population of France. (His methodology and ideas are
described in Cochran (1978).)

The Norwegian statistician A.N. Kiaer is generally credited with putting forward
the idea of random sampling by a "representative method” as an effective and cost-
efficient method of gathering a sample to estimate a population total. Between 1895
and 1903, Kiaer relentlessly pursued his ideas (despite the fierce opposition of many
eminent statisticians of the day) before the International Statistical Institute (IS) at
their annual meetings. He met with only limited success, however, as representative
sampling was not adopted as a practical technique.

Kiaer’s (1897) (see Kiaer (1976) for translation) paper was perhaps the first in
which a large-scale, representative sample was used in practical application. He also
discussed the principles, uses, and limitations of various sampling designs, though not
in the language we use to describe such designs today. Kiaer did not introduce the

idea of randomization in surveys, but merely stressed the selection of representative

4
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samples. Lucien March, another French statistician, introduced the concepts of clus-
ter sampling and simple random sampling without replacement in his discussion of
Kiaer’s paper at the International Statistical Institute meeting of 1903. This was the
same meeting where the ISI passed a resolution supporting and promoting the use
of the “representative method” of sampling. Despite his role in the development of
probability models for sampling, March remained skeptical of their usage.

From 1903 to 1925, randomization and representative sampling went undiscussed
at the IS meetings. The turning point for the use of survey sampling came in the
1920s, though much of the groundwork was laid by Arthur Bowley, who promoted
and implemented Kiaer’s ideas throughout the first three decades of this century.

Bowley (1913) conducted a study of poverty in Reading in 1912 based upon a
survey sample gathered through randomization techniques and compared his studies
with those of other statisticians who did not use survey techniques. Bowley (1907)
also came perilously close to discovering a central limit theorem for simple random
sampling, providing an empirical demonstration through random sampling from a list
of numbers in an almanac.

Bowley was quite active in the commissioning of an ISI study on representative
sampling conducted in 1924 and reported at the ISI meetings in 1925. (The results
of this commission are discussed extensively in Yates (1946).) The ISI at that point
passed a resolution supporting both random and purposive sampling techniques. Bow-

ley (1926) provided a summarization of survey techniques available at the time and
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laid out the framework for stratified sampling with proportional allocation.!

The breakthrough in the 1920s continued with the pathbreaking work in statisti-
cal estimation theory and practice of R. A. Fisher at the Rothamsted experimental
station (Fisher (1925)). Fisher emphasized randomization, replication. and stratifica-
tion in sampling design. His work lead to the calculation of statistical estimates and
their precision by Yates and Zacapony (1935) and Cochran (1939). Indeed. Fisher’s
work paved the way for Neym':m’s (1934) classic paper which. for the first time., gave
a systematic discussion of inference from random samples drawn from a finite popula-
tion, contained a comparison of purposive sampling and random sampling, introduced
the concept of the confidence interval, established the asymptotic normality of the
sample average, and provided the optimal sample sizes within strata independently
of Tschuprow’s (1923) work. Later Neyman (1938) developed the theory of what is
known as “two-stage” sampling.

In the U.S., around this period, important research work on sampling design was
conducted by the researchers at the Department of Agriculture and the statistical lab
at Jowa State University. Morris Hansen and William Hurwitz made their impact on
the development of survey methods at the U.S. Bureau of the Census. (Some of these

developments are discussed in Hansen, et. al. (1983).) They were quite instrumental

! It is interesting to note that the influential work of Gini (1928) on the Gini coefficient was un-
dertaken at this time. though Gini did not use representative methods. He was affected by the
discussions however, as he purposively selected certain data out of the [talian census of 1921 with
the intention of matching sample averages of seven economic variables with their known population
values. His method did not work very well, however, as his sample averages differed radically from
the census averages for many other important variables.

6

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com



in gaining acceptance of survey methods in many government agencies. Duncan and
Shelton (1978) provide a discussion of this very interesting period in statistics history.
Hansen’s introduction of sampling methods were widely fought on political grounds
and his diplomacy is credited with gaining acceptance for these methods. The politics
surrounding the introduction of sampling in the 1940 U.S. Census (and the discussion
of them by Duncan and Shelton) make for interesting reading, particularly in the light
of current attempts by the Republican Party in the U.S. to prevent the use of sampling
in the 2000 Census.

In the 1930s and 1940s, labor force surveys dealing with issues such as measuring
employment and labor force participation were under particular pressure to provide
accurate estimates at low cost. These surveys, using a low-cost, systematic sampling
design, were necessitated by the Great Depression-see Stephan ( 1948) for detailed
references. Sampling with probability proportional to measures of size at the succes-
sive stages of sampling was also introduced during the work on labor force studies of
that period.

In the 1930s, parallel developments on the application of survey sampling took
place under the leadership of P. C. Mahalanobis at the Indian Statistical Institute
and P. V. Sukhatme at the Indian Council of Agriculture Research. Mahalanobis
introduced the concepts of developing sampling designs based on cost and variance
estimates, and methods of evaluating survey errors. His famous survey of the Bengali

jute crop (Mahalanobis (1940)) and his ability to predict accurately the total output

7
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of jute from samples of less than 5% are well known.

The work during the 1930s and the 1940s revolutionized the collection of house-
hold survey data after the war. Major developments include the first national sample
survey data developed annually (1950-1970) and then every five vears at the Indian
Statistical Institute, the household survey data now collected in U.S.. U.K.. and Tai-
wan, the Living Standard Measurement Study (LSMS) survey of Peru and the Ivory
Coast by the World Bank, and Malaysian family survey data by the Rand Corpora-
tion. These household data are now extensively used in development economics to
study poverty, income distribution and economic welfare.

Another important development since the 1960s has been the challenge presented
to the dominant framework by V. P. Godambe-first laid out in his work Godambe
(1952). He has proposed a model-based framework instead of the finite population
based framework upon which the bulk of statistical theory for survey sampling has
been based. He proposes using estimating functions to get at model parameters
instead of the classic approach which has focused on estimating finite population
parameters by correctly inflating sample values. For his view of the literature on
estimation in finite populations, see Godambe (1976). His challenge to the dominant
paradigm is laid out in a series of articles, Godambe (1995) and Godambe (1997).

and in a collection of works, edited by Godambe (1991).
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1.2 Survey Designs

Consider the problem of designing a survey to estimate some variable from a popula-
tion. Statistical theory has shown that it is possible to get quite accurate estimates of
many variables without appealing to a population-wide census. By selecting a sample
of elements from the population and estimating the variable(s) of interest from the
sample, one can get a good idea of the true underlying parameters.

The obvious starting point is to make a listing of all the elements in the population.
This is typically called a frame, and in a household survey it would be a list of all
the households in the population. It may be built upon phone numbers, driver’s
licenses, tax returns, etc. Obviously making a complete listing is not necessarily
straightforward. A list of all phone numbers, for example, would exclude people
without phones. We will not deal with problems of frame and frame selection here.
but will refer interested readers to the general texts on sampling listed at the end of
this section. Many techniques exist for solving problems of missing elements—from
supplemental door-to-door interviews to building frames from a combination of lists.
For our purposes, we will assume the existence of a frame which includes all the
elements of the population, while realizing that this will rarely hold in practice.

How should one go about conducting a survey? One possibility is to randomly se-
lect elements, with equal probability of selection assigned to each element, out of the

entire pooled population. Once an element is chosen, it may either be included in the
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population for future random selections or it may be excluded from the population.
If an element is included in the pool for future selections after having been selected
once, the probability of any element being sampled on any draw will be the same for
all draws. This is called random sampling with replacement, and is the typical econo-
metrics textbook assumption (often implicit) of how the sample has been gathered.
If an element is excluded, then the probability of selection for elements will change at
each draw. An element already drawn, for example. will have zero probability of se-
lection in future draws. An element not drawn, will have a slightly higher probability
of selection for future draws, since there is now one less element in the entire pool.
This is called random sampling without replacement. Both random sampling with
replacement (RSWR) and random sampling without replacement (RSWOR) will be
discussed in detail below.

Another possibility is that the population may be subdivided into different units
prior to sampling. Then a separate sample may be taken in each unit. For example, in
the United States, the entire population may be divided up by state or by county and
then samples drawn in each different geographic unit. For a survey of the labor force.
we may first divide the working population into different industries or job categories.
For a survey of banking practices, the population may be divided into Federal Deposit
Insurance Corporation (FDIC) member and non-member banks.

Several reasons exist why the population may be so sub-divided. Perhaps different

populations will be surveyed by different administrative units and therefore having a

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyynpayw.manaraa.com



clear demarcation of jurisdiction is important. Different states may have very different
systems of listing population and keeping them different may save on administrative
problems. There also may be reasons connected to the nature of the survey. Suppose
that we want to compare the behavior of FDIC-member and non-member banks.
By first sub-dividing the population and then drawing a sample within each sub-
population, we can guarantee a large enough sample from each population of interest
to conduct our analysis.

This type of sampling is called stratified sampling. The overall population is first
divided into sub-populations, called strata, and then a separate sample is taken in each
stratum. The stratum-specific samples may or may not be of equal size and different
techniques may be used in different strata. Often strata with small populations are
relatively more heavily sampled to provide enough observations to make accurate
inference. As we will see below, if the proportion of elements selected in each stratum
is proportional to that stratum’s population, stratified sampling poses no particular
challenge. However, when sampling is not proportional, parameter estimates from
stratified samples may be biased and inconsistent.

It would be easy for policy analysts and social scientists if every survey could
be designed so as to maximize the amount of information available in the survey.
Realistically, surveys are usually conducted under fixed budgets. Survey practitioners
are often quickly-trained students, without specialized knowledge of survey design.

For both ease of implementation and to save money, surveys are often conducted in

11
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several stages. By this, we mean that the random selection of elements is done in
several stages and that the elements over which the random selection is being done
are not necessarily the ultimate units of interest.

An example will serve to clarify. Consider a survey of dairy farms in Minnesota
and Wisconsin to assess the impact of bovine growth hormone usage in the Midwest.
Assume that a desired sample size of 100 has been chosen. One possible way to
conduct the survey would be to lump all dairy farms in Minnesota together and
randomly select 100 farms to be surveyed. A cheaper and easier alternative would be
to randomly select 20 townships in Minnesota and then within each of the 20 selected
townships, to further select five farms for inclusion in the survey. It is easy to see that
the first method may well involve travelling to 80 to 90 different far-flung townships
while the second would involve only 20 such trips.

This type of survey is called cluster sampling. It is also referred to as two-stage
sampling, since there are two successive levels of sample selection. We generally think
of clusters as being geographical units or units of the population which are in prox-
imity to one another, though this may not be the case. (We may be selecting clusters
of records out of a computer which, though sequentially listed in the computer. are
really thousands of miles apart in real space.)

Cluster sampling may also be implemented by choosing an element randomly and
then including nearby elements in the sample. For a household survey, for example,

a single household is randomly selected from the population and then a number of

12
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households in the immediate proximity are also included in the sample. Using this
method, for example, one could draw 100 households randomly from the population
and turn this into a sample of size 1000 by including 9 nearby houses in the survey
for each household chosen in the original sample.

Cluster sampling introduces dependence into the data, and elements in the same
cluster will tend to exhibit positive correlation. Households within the same village
(or cluster) can be assumed to face similar conditions—for example we expect heating
fuel costs to be correlated for households in the same area.

Yet another variant of cluster sampling is called systematic sampling. The great
advantage of systematic sampling is that it involves making only one random selec-
tion from the population. Once that selection is made, every k-th element in the
population will be sampled until the desired sample size is reached. This method is
quite easy to teach to survey gatherers in the field: "pick one of the first five houses
randomly and then survey every fifth house in order.” This directive does not take a
degree in statistics to implement!

Figure 1.1 provides a visual picture of the framework which has been presented
here. We have some finite population of elements, listed in a frame. Selection may
occur at this level, either with or without replacement, or it may occur in the various
sub-population levels. We have a first layer of sub-populations called strata which

exhaustively cover the entire finite population.

13
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FIGURE 1.1

Complex Sampling
in Finite Population Framework
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If we employ stratified sampling, some elements from each stratum are surveyed.
Within each stratum, we have clusters of elements that may be geographical clusters
or job title clusters or diagnosis clusters, etc. In cluster sampling, in contrast with
stratified sampling, some but pot all clusters are selected.

There are several excellent statistics books which discuss various sampling schemes
such as systematic sampling, stratified random sampling, and cluster sampling in
detail: see Kish (1965), Sukhatme and Sukhatme (1984), and Thompson (1992) among
others. Kalton (1983) and Dalenius (1988) are nice introductions to the subject. In
this paper, I assume that the data has already been gathered and that the analyst
has information about the structure of the data.

Economists use survey data all the time. Many commonly used data sets con-
sidered by economists such as the Living Standards Measurement Surveys (LSMS)
of the World Bank, the Survey on Income and Program Participation (SIPP) of the
US Census Bureau, and the Labor Force Survey (LFS) of Statistics Canada are gath-
ered through surveys which combine techniques of stratification. clustering, and/or
systematic sampling.

Table 1.1 provides a list of data sets which have been widely analyzed by economists.
As one can see, all of them deviate significantly from the RSWR assumption. How-
ever, little or no attention is paid by most applied economists to the problems which

arise from the survey structure of the data.
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Table 1.1
Sample Design of some Household Surveys

Sample Stratified? Clustered? Stages
SRS No No One
Pakistan (1991) Yes Yes Two
Ghana (1987) No Yes Two
Russia (1993) No Yes (twice) Three
India (1976) Yes Yes Two
Kenya (1986) Yes Yes Two
China (1989) Yes No One
Canada (LFS) Yes Yes Two
Mexico (1989) Yes Yes Two
U.S.
SIPP (1989-92) Yes Yes Two
16
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Despite three decades worth of developments in statistical inference based on
survey data, econometric analysis is carried on under the false assumption of RSWR,
although for notable exceptions see the excellent works of Pudney (1989), Deaton
(1997), and Howes and Lanjouw (1994). This is especially a matter of concern in
development economics where measures of income inequality, poverty and elasticity
are used in policy-making by governments and international agencies. When survey
data are analyzed using standard econometric techniques, large problems of bias and
incorrect standard errors may arise. Policy-making may thus be significantly affected.

The failure to take into account information about the survey design when con-
ducting econometric analysis may be due to the statistical complexity of the various
sampling designs, which makes analysis difficult for the average applied economist.
It may also be due to the almost total lack of exposure to the statistical literature on
survey design in econometrics texts. Given this deficiency, a systematic development
of the parametric and non-parametric econometric inference (estimation and testing)
of various econometric models, under various practical sampling designs, is needed.

This paper is a beginning step towards that goal.
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1.3 Preview

The plan of this paper is as follows. In Section 2 we present the estimation of the
finite population mean and inequality measures under random sampling without re-
placement (RSWOR), stratification and clustering. Ullah and Breunig (1998) have
provided a unified econometric framework of the five decades of diverse statistical
literature on estimating the population mean. These results are summarized here
and the implications of mis-specifying the sampling design for mean estimation are
considered. These results are then extended to several other models. Section 3 deals
with the estimation of inequality and poverty in complex samples. We first consider
the bias problem which arises in estimating inequality from a small sample and how to
correct for that bias. We then consider inequality estimation and inference for RSWR.
RSWOR, stratified, and clustered samples. Section 4 examines non-parametric kernel
density estimation for RSWOR, stratified and clustered sampling. In Section 5. we

provide a brief conclusion and point the way to future areas of research.
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2 EFFECT OF SAMPLING DESIGN ON
ESTIMATION AND INFERENCE
IN MEAN MODEL

2.1 Mean Model

Let us consider a finite population of size N for an economic variable Y. and

write the population mean model as
Yi=ﬂ-+Uisi=1$---9N (1)

where Y; is the i-th population observation, U; is the i-th error, and u and o? are the

population mean and variance, respectively, given by

s?, (2)

Mz

1 1 N-—1
==Y Vi,ot=—Y (Yi—p)i=
F=NE 4 N_I(Y i) N

™Mz
i

S?= i(Y, —1)%/(N —1). The non-sampling errors, U;, sum to zero by the definition
of i in (2). U; and Y; are therefore non-stochastic variables. However, if we treat the
finite population model (1) as having been generated from an infinite population or
super-population model, then U; and Y; are stochastic.

We will consider the estimation of the mean when the usual textbook assumption
of sampling with replacement (or sampling from an infinite population) is violated.

We will first consider random sampling without replacement for a finite population,

and then the general case of unequal probability sampling. We then consider the most
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commonly used techniques for gathering economic data—stratification. clustering, and
systematic sampling-and how our estimation and inference about the mean must

change from the random sampling with replacement case.

2.2 Random Sampling Without Replacement (RSWOR) and
Random Sampling With Replacement (RSWR)

A random sample without replacement of size n, often referred to in the statistics
literature as a simple random sample (SRS), is taken from the above finite population.

We denote the sample observations as y; and write for these observations
yi=/-‘+uis7:=ls---sn (3)

where u; is now the i-th sampling error. We may also write this in more compact
form,

y=t+u (4)

where ¢ is an n x 1 vector of ones.

Since the sampling is without replacement,

7.({) = Pl =Y;] = (5)

1
N

is the probability that the r-th population unit is selected in the i-th draw and

Tro(ij) = Plys = ¥; and y; = Y] = N—(ﬁ (6)

is the probability that the (r,s)-th unit is selected in the (%, )-th draw where
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t,j=1..,nand r,s=1,..,N (i 5 j,r # s). In a sample of size n.

2=

N,
T = m(1)=

=1

will be the probability of selection of the r-th population unit in the sample and

M=

Tro= 3 3 Moglis ) = %(;‘_11) (8)

£ =1

3
t

<

the probability of selection of the (r, s)-th population unit in the sample.
In view of (3) to (8), we get

N-1
Eu,-=O,Euf=o'2=TSZ (9)

and, for 7 &7,

o? S? 2
N—-1_ N~°F° (10)

Fujuj=01=—

where p = —1/(N — 1) is the intra-class population correlation between y; and y;.

It is easy to verify that

N
Ew = yo® == 3 (¥ — ). (11)
Ni=|
4 4 1 N ¢
Eu; = (n2+3)0 = v =¥—p
=1
1 N N 7]03
2 - 2 — = —
Eui uy 112 N(N—l)i_Z_-:I_J;l(K p)(Y; — p) N —1
(]
1 N N
E 2 2 = Y;“" ZY_ 2
U; U 1122 NN =1 tz=:1;=x( w) (Y — p)
i#j
_ N-—(m+3)
N-1
1 N N (72 + 3)o?
Ewdu, = = Y: — u)3(Y; =
i)
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and fori# j#£k#£1

1

Euivjue = 0’123=N(N__1)(N_2)¥i¢;¢k4?(yi—#)(yg'—#)(Yk—/-4)
_ 271 03
- (N-1)(N-2)
1
Eu ujupy = ”'”“=N(N—1)(N—2)(N—3)Z ; Zk:; (12)
iFjFkHEL
(Y — p)(Y; — ) (Y — 1) (Y ~ )
_ 3[N —2(v; + 3)] ot
T (N-1)(N=2)(N-=3)
Evluju = al,m=N(N_11)(N_2); > S - - k)T~ g

iEjFk
2(‘72 + 3) - N ot
(N -1)(N -2)

where -y, and +, are Pearson’s measures of skewness and excess kurtosis (see Kendall
and Stuart, 1977). For normal distribution, v; = ¥ = 0. From (10) through (12) it
is clear that random sampling without replacement represents a set of n identically
distributed but correlated, random variables ;.

In the case of random sampling with replacement (RSWR) the draws are inde-

pendent and thus
Eu;=0, Eul = 0® Eu} =v0°, Eul = (v + 3)o* (13)

because O12 = 01112 = O123 = O1234 = Ol113 = 0 and o122 = 0’4. This also holds if
we are sampling from an infinite population (N — co)— the case usually considered
in econometrics. In what follows we analyse the effect of assuming RSWR when the
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true design is RSWOR.

2.2.1 Estimation of Parameters: RSWOR

From (4) using (9) and (10) we have

L p-p
p 1 P
E{ud}=V(u)=o?’Q =0o? . (14)
- p p 1 -

The n x n matrix 2 can be rewritten as

Q=(1—P)[I+lp

e (15)

which has inverse

-1 1

S A- A +amo) A= —ped] o)

The least squares (LS) estimator of 4 in (2) is obtained by minimizing w'u with
respect to p. This gives
1
U = / =1,7 == — . -
=) y=-3> w (17)

The estimator 7 is unbiased, £y = u, and its variance is

VE) = o*( ) Qe e)! (18)

= §D+W—Ud

N-—-—n
nN

1 n
S? = r—L(l - ﬁ)S3
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where the last equality gives the familiar expression of the variance of the sample
mean under RSWOR. The term (1 — &) is known as the finite population correction
(fpc).? We can see that as the sample size converges to the population. that the
variance of ¥ will become zero.

The efficient generalized least squares (GLS) estimator of 4 is
Jors = (Q71)7WQ ly = (L)~ Wy (19)

where the second equality follows by using the expression given above for the inverse
of Q. Thus Y, 5 and 7 are the same.
When the sampling is RSWR or if the population is infinite. 2 = I because p=0.

In this case, £y = u and

o2
-7 9
V(g)=—, (20)
which also follows from the last equality of (18) where ¥ 2 0as N — oc.
From (18) and (20)
V(Urswor) _ ¢ N-n
==+ (n-1)p| = <1 21)

The above results indicate that the LS estimator 7 is unbiased for both RSWOR
and RSWR. However, if the sampling is actually without replacement, the vari-
ance formula in (20) is wrong and gives an over-estimate of the correct variance

(14). To obtain the correct variance, we calculate an unbiased estimator of S2.

2 The finite population correction was first noted by Isserlis (1918), though ome rarely sees him
credited with the result.
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s = (n—-1)7'"S(y; — 7)® and then deflate (20) by (N — n)/(N — 1). For exam-
ple if n = 20 and N = 100 the correct variance will be approximately 20% smaller
than the variance of a sample of size 20 drawn with replacement. The smallness of
the variance of Jgsyog is due to the negative correlation p, which results from the
way in which the sampling is conducted (without replacement).

Of course. the finite population correction will not have a significant effect on
our analysis in the case where the sample size is quite small relative to the overall
population size. More significant deviations from the RSWR case include potential
bias which arises from unequal probability sampling and correlation induced in the

data by clustered sampling. It is to these problems that we turn now.

2.3 Sampling with Unequal Probabilities

It is often the case with data used by economists that not all elements of the popula-
tion enter the sample with the same probability. This may be due to intentional over-
or under-sampling of certain segments of the population, or it may be due to differing
response rates from different parts of the population. In this section, we consider the
general problem of how to conduct unbiased estimation of the mean when sampling is
done with unequal probabilities. Below, we will consider the specific case of unequal

probability sampling arising from stratification.
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When the sampling is with unequal probabilities, =, (z) in (5), 7, in (7). 7 5(2.7)

in (6), and ., in (8) are not constants. In this case, we first transform (4) by
W'y = W3, + W2y (22)

and then obtain the LS estimator of u by minimizing the weighted squared error
WWau = (y — u)W(y — u), where W = Diag. (wy, ... wy) Is an n x n stochastic
diagonal weight matrix whose elements w;, also known as the normalized expansion
factors, satisfy /w¢ = 3T w; = 1. This gives the weighted LS estimator of U as
w=Wy=> wiy (23)
=1
The stochastic weights w; are chosen such that (using (5) and (7)) the sample is
representative of the population in the sense that the sample mean, on average. is
identical to the population mean. That is,

n n N
Eg, = EQ wiy)=3.5 w;Y;m;(3) (24)
i=1

i=1 j=1

N
= D wYim=p
J=l
This gives
_ 1
- Nm—

and 7,, = N~ 3"}(y:/ ;) where ; is the probability of selection of the i-th population

unit in the sample. When m; = n/N we get 3,, = ¥ as given in (17).
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An alternative way to obtain the weighted estimator of 4 is to write

EY, = E(I} wiy)=EXY wid:Y)) (26)
= YV (wi.Ed)Y: =%} w;mY;
where d; is a dummy random variable which takes value 1 when Y; is in the sample,

and zero otherwise. Since the probability of selection of the i-th population unit in

the sample is m; we can verify the following

Edi = M
V(dt) = Tl’i(l i 7l'i) (27)
CO’U(di, dg) = My — T 5

where 7;; is defined in (8). This in fact gives us an easier way to calculate the variance
of the weighted estimator. Using (27) we see that
N N
V(i) =>_ wlY?m(l—m)+ > wiw,; Y Y(my; — momy). (28)
i=1 i#j
When 7; = n/N and 7;; = %n'_% we get (18). We point out here again that both
the mean and the variance of ¥, contain Y; since the error in this finite population
model results from the sampling, not from the errors in the superpopulation. (In
other words, we are not making any assumption about a data generating process.)

Let us now turn to the specific case of stratified sampling which is frequently found

in data used by economists.

()
~1
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2.4 Stratified Sampling

In addition to using sampling without replacement, most surveys use stratified
random sampling. The finite population is first divided into different groups (sub-
populations), typically by geographical regions, such as rural/urban or states. or by
certain characteristics such as blue-collar and white-collar workers. RSWOR is then
used within each stratum.

There are several advantages to this method as opposed to RSWOR or RSWR
from the entire population. First, the stratification provides a more representative
sample overall, and so reduces the variance-especially when the variation within strata
is small but the variation between strata is large. Since sampling is done indepen-
dently in each stratum, the variance of our estimators will only be a function of
within-strata variation. Stratification allows for different types of sampling schemes
in different strata, desirable perhaps because of cost considerations. For example,
one can perform SRS in urban areas where households are closely concentrated. and
cluster sampling in rural areas, where households are widely dispersed (see below).
Finally, stratification helps to obtain enough sample observations from small sub-
populations of special interest.

The population mean model (re-writing (1) above) for stratified sampling can be
written as

K;i=,LLh+Uhi7h'=1$"‘7H? i=19-~-9Nh (29)
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where Y},; is the ¢-th unit in the h-th stratum, p, is the mean of the h-th stratum

1 th

= — Yii .
Hh Nh; h (30)

and Up; is the error. The variance of the A-th stratum is

1
N, —1

Ny
N, —1

Ny
> (Vu~-Ya)l= o (31)

=1

s? =

In a more compact form we can write the population model for the h-th stratum

Yh = (pitp + Uh (32)

where Y}, is an NV, x 1 vector of observations, U, is an N, x 1 vector of errors, and ¢,
is an Nj, x 1 vector of ones. The population size is N = % N,.

The stratified sample observations, generated by RSWOR in each stratum, follow

Yhi = [Uh + Uni, h= 11 ey Hv 1= 1, -e-y Np (33)

or more compactly

Yo = thln+ U, (34)

V(un) = op (35)

where ¢, is ny X 1 vector of unit elements, yj, is an n, % 1 vector of sample observations

(Yni) in the h-th stratum, and 2, is Q in (15) with n = n,. The total size of the sample

isn=31 n,.
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2.4.1 Estimation of Parameters: Stratification

The model (34) for the A-th subpopulation (stratum) is the same as that of the
population model in (4). Thus the results from Section 2.2.1 go through for the

estimation of the h-th stratum parameters. For example the LS estimator of u, is

1 & -
Un="—2_ Uni = (thtn) " "thyn (36)
h =
and
2 1 & 2
3h=nh_1§(yhi“yh)* (37)

The parameter of interest will usually be the overall mean of the population. That
is

1 H N
#=‘7\722Y7ﬁ=29h#h (38)
7 h=li=l

where 6, = %’,ﬁ is the proportion of the total population in the h-th stratum. An

estimator of u is then

H
T =_ OnTs (39)
h=1
which is unbiased. Further
_ 4 2 1 <4 2 Ty Slf
V(Ue) = Z 6, V(@) = z Oh (1 — —)—. (40)
h=1 h=1 Vh Ny

provided that the sample is chosen independently for each stratum and that sampling
is without replacement within each stratum.

When there are many strata, individual strata means, p,, may not be of interest.
Also, when strata are strictly administrative divisions with no economic interest, we
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do not want to estimate each stratum-specific mean individually and then sum as in
(39). This may also be impossible or impractical if there are many strata with very
small sample sizes from each stratum. In most cases. we are interested in estimating
the population parameter p directly from the pooled sample of data.

To see the least squares (LS) solution of 1 we rewrite (33) as
Yni = b+ Ly, + Up; (41)

where pf = up ~ py Eup; = 0, Eu}; = 0}, Eupiupy = ppo? for h = K. i # 7 and
0 when h # h’. ® In the model (41), however, x! and y are not identifiable. We can
identify the population parameter by imposing the restriction 'g:l By = 0. Using
this we get the LS estimators of ux;, and 4 by minimizing hil iz':(yhi — p— u3)?. This

gives §,* and hence 7, as in (36), and the LS estimator of x

n

>

= _1 = 2
—_ ; - .L'
y=- hS;‘.l Yn h§=l Ph U (42)

-
i

where p, = ™4 are the sampling proportions for each stratum. Note that this is just
the estimate of 1 we get by assuming that the sample is a simple random sample and
pooling all the data, thus ignoring the stratification. We will thus refer to ¥ as the

pooled estimator, 7. We also note that

H
Eg=> phpn (43)
h=1

3 Note here that we are considering the case where a random sample without replacement is drawn

from each strata. Since we have strata population sizes N, we will have finite population effects

within each stratum, giving pr = N:ll .
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and

H
V@) =) ptV(Fa) (44)
h

Under stratification, it will usually be the case that the inclusion probabilities for
each element (7) will no longer be identical. The probability that the i-th element
in the h-th stratum enters the sample will be the number of elements from the h-th
stratum divided by the population total in the A-th stratum, m,; = m, = n,/N;. Thus

the LS estimator § will be biased unless one of the following two conditions hold

np

(@) N - N (45)
K.

(2) Bn =

The first case is when the combined sample is SRS; this is known as proportional
stratified sampling, a special case of stratification in which the data will be self-
weighting. Even when stratification is designed to be self-weighting, however, differing
response rates in different strata will often result in unequal sampling probabilities.
The second case, in which the population is homogenous with respect to means, will
result in unbiased estimation of y using 7, however the variance will still have to
be adjusted since the sampling is independently conducted in the different strata.
Neither (45),() nor (45),(#2) will hold in most surveys.

The problem of bias and inconsistency is potentially serious, as demonstrated
in the simulation discussed below in section 2.7. For example, in the case of two
strata with slightly dissimilar means (specifically x; =1 and p2 =1.5) the bias of i
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will be 25% when the sampling probabilities differ by a factor of 10. The sampling
disproportion is much larger than this in many data sets; consider for example, the
Survey on Income and Program Participation (SIPP) of the U.S. Census Bureau.
where the sampling disproportion is nearly 1000 between some subgroups (SIPP Users
Guide, 1991).

The solution to this bias problem is to use the weighted estimator discussed in
(23) above. To see that this is the weighted least squares (WLS) estimator. we can
minimize ;0 S wy; (Y — p — i )? with the restrictions that f: % Whi tp =0

h=l i=l1

and S, S0, wy; = 1. This gives

H np
Tw = D_ D WhiYhi (46)
h=1 i1=1
and
,
Yhw = Z Whi Yhi (47)
=1

The inflation, or expansion, factors wy; are chosen such that E Yp=p and £y, , =

- This gives
>3
gw = Yhi » (48)
h=tiz1 NThi

Jhw = Z N Yhi
Thus for stratification we have
w; = = (49)
where ; is the probability of selection of the i-th population unit in the sample.
When m; = n/N (i.e. when condition (i) above is met ) we get Yp = U as given in

33

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



(42). If we substitute ;; = n;/N;, where this is no longer a constant. we gety, =7,
and 7y, ,, = Y.

We can thus see that the weighted least squares is equivalent to transforming the
model (1) by

W'y =Wy 4+ W2y (50)

and using the weights from (49) and the method discussed in section 2.3 above.
Weights are identical for units in the same stratum.

We can also think of the stochastic weights w; as being chosen such that the sample
is representative of the population in the sense that the sample mean, on average. is

identical to the population mean. That is,

n n N
Eg, = EQ wiy)=Y 5 w¥;m, (i) (51)
i=1 =1 j=1
N J
= Z w; Yimi = p

where m; (i) is defined as in (5), the probability that the j-th population unit is
selected in the i-th draw. Larger weights are thus given to those elements which are
under-represented in the sample. This matches our intuition that over-sampled strata
should have less impact on our analysis.
The variance of ,, will be the same as in (40). However, 1if we ignore the fpc, we
can use the consistent, weighted estimator of the variance
H n,
Var(@y) =3 3 wai (uni — 7)°. (52)

h=1 i=l1

M
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This will slightly overestimate the variance, however, since we are not using the
information that the between strata variances are zero. Sometimes we only have
information on sampling probabilities (weights) and do not know to which stratum
each data point belongs. (52) will usually give an adequate approximation of the
variance in this case.

If we (mistakenly) assume p; = p and pool all the observations (ignoring strata
and treating the data as a random sample of size n from a population of size N') then

the variance of the pooled estimator is
_ 1 1.
V(@) =V(ye) = (= - 5)S% (53)
n N

This will no longer be appropriate for most surveys.

This is only the same as V(3,,) or V(yp) if ny/n = N,/N and pu, = p. In this
case the population is homogenous and the combined sample is a simple random
sample. In general, V(yp) > V(7,), meaning that ignoring the stratification in the
data will cause us to overestimate the variance of the sample mean. This problem
will be especially important if within-strata heterogeneity is low and between-strata
heterogeneity is high. To see this, consider V(7,,) for case of proportional stratified

sampling, where n, = nN,/N. In this case

V(Ge) b1 On S} (54)
H
Vivr) 2 Onln — ) + 3L, 64 57

where we use 5? ~ N7'57L, ST (Vii—p)? = TE, 6, S2+5H | 6n(un —p)?. Thus,
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if between-strata variation is zero, V(yp) = V(¥,,) But if the between-strata variance
is non-zero, V(7,,) is smaller than V(yp).

One of the advantages to conducting a stratified survey is that this information
may be used to design surveys which minimize the variance of the estimator. If
something is known about the within-stratum variances (say from previous samples
or from similar surveys of related populations), the stratum-specific sample sizes can
be chosen to minimize the overall variance of 7,,.

In order to minimize the variance of the weighted estimator, 7,,, one must choose
that n, for which V/(7,,) is minimum subject to "2, n, = n. It can be shown using
simple calculus that the optimal 2, is

YLN),S;,

Zhﬂ=l np )

(55)

n; =

In practice, the unbiased estimator of V(3,,) can be calculated by substituting S?

with s? in (40). Further, if x5 = p. the unbiased estimate of the variance of Yp can

be calculated as
V) = (& — L EamlMe—D)ehy (56)
Alternatively,
V@) = (-~ 25)s* (57)

where s? = (n — H)"' L, (ny — 1)s? is the pooled estimator if $2=52. If SE£S?
but n,/n = N,/N, one may consider s] = (n — 1)7' T, ¥ (y, — 7)® = (n —

D)1 (s — DS+ na72 - (., na Yn)?/n]. However, if nn/n # Np/N and
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Hn =4, then

- H - 2
Vo) = (- =it e g (58)

where g is an unbiased estimator of (N —1)"!' "7 N, (us — )2, see Cochran (1953).

From the above analysis it is clear that if the sample observations ys; are gener-
ated by stratified random sampling then they should be reweighted to resemble the
population by replicating (inflating) sampling units using the inflation or expansion
factor, and treating the enlarged sample as if it were the population. The inflation

factor, 64, for each sampling unit i in the h-th stratum is the reciprocal of its sampling

probability, that is 6y; = L = %} If we multiply each sample observation by its infla-

Thi

tion factor 6,; we obtain an unbiased estimate of the population total. Alternatively

if we multiply the sample observations by their weights wh; = 6h;/ 5 Y 6ni = N1lr,..'
the normalized inflation factor, we get an unbiased estimate of population mean. as
shown in (51) and in section 2.3. Exactly the same procedures can be used to obtain
estimates of medians, variances, and other parameters.

Now we turn to another type of sampling frequently found in economic data,
cluster sampling. In stratified sampling considered above, elements are selected from
all strata. An important difference in cluster sampling is that population‘elements
are divided up into various clusters, sharing common traits, and only some clusters
are sampled. This will cause our usual variance estimates to under-estimate, quite
substantially, the true variance of the estimated parameters. In other words it affects

the variance in the opposite way that stratification does.
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2.5 Cluster Sampling

Let us consider Yj.; to be the population observations of the c-th group or cluster,
c¢=1,..,C} in the h-th stratum, h = 1, ..., H. In each cluster, there are M, elements
such that N, =CZ§1 M, is the number of elements in the h-th stratum. Cluster
sampling or single-stage sampling involves drawing a sample of &, clusters in each
stratum h and then sampling all M, elements in the chosen clusters. This is also
referred to as first-stage clustering. However, if we further take a random sample
of my, elements out of M, at the second stage then the overall sampling is called
sub-sampling or two-stage sampling. In two-stage sampling, the sample inclusion
probabilities 7x; will depend upon the probability of selection at both stages of the
sample.*

The first-stage units, (sometimes called primary sampling units), could be villages
or street blocks, and the second-stage units could be households. The primary ad-
vantage of cluster sampling is that it drastically reduces survey cost per second-stage
unit. The disadvantage is that it leads to a higher variance than a SRS of the same
size due to the correlation among elements within the same cluster. The standard
assumption of uncorrelated observations in cross-sectional data fails dramatically for
clustered samples.

We begin by considering the problem of estimating population means i (or py)

4 The probability of selection of every element in the chosen cluster is Mpe Mg [/ Mp e Ny, .
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under single-stage (cluster) sampling. For this we consider the population model as
Yhei = the + Upei (59)

where ZC:Z Ukei = 0 by definition of pn.. We generally assume a common mean in
each stratum, so that
Yhei = pn + Uhei (60)
We can also think of the model as being an error-components model with cluster
specific effects which have expected value zero over the entire stratum. We thus
re-write (59) as
Yiei = pn + ac + € (61)
For simplicity, we will consider the case of estimating a stratum-specific mean® . For

this case, we suppress the h subscript, and consider the population model

Yo = p+Uas
= K+ ac+ e (62)
The sample model is
Yei = M + Ugi, c=1..,Ci=1,.. M. (63)

where we assume RSWR such that
Eu; = 0, Eul,=0®, Euqu,;=po®,i#j (64)

Eugus; = 0,c#c;

5 This is also appropriate for estimating a population mean when clustering is present without
stratification.
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p > 0 is called the intra-cluster correlation coefficient. (64) implies that the elements
within clusters are correlated, but are uncorrelated across clusters. The total sample

size s n =Y M,. Thus
Eu=0and Euv = Diag. (Zl’""ZC) =3z (65)

where X is an n x n block diagonal matrix with >, = o?[(1 — p)] + peccl]. (cc is

M. x 1 vector of ones.) The LS estimator of x is

(66)

i M;

- n

S =

Provided that clusters share a common mean, . = u, the estimator ¥ is unbiased.

Further, its variance is given by

(o
V@) = FX T, (67)
= 204 (37 - 1))

where M = n~! 3~ M2 is the weighted mean of cluster sizes.

As shown above in section 2.2.1, the LS estimator 7 is the same as the GLS

estimator for the structure of 3_, in (65).
If we ignore the clustering and assume that the sample is drawn as RSWR of size

n, we will underestimate the variance of % by the factor

d=(1+ (7 —1)p). (68)
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This is kmown as the design effect (see Kish (1965)). Failure to account for the intra-
cluster correlation will lead to serious underestimation of the true variance in (65)
since p will generally be positive.

In practice, we use an unbiased estimator of the variance of u

- ~f ~ -
* n-d n—d cgl = (%9
or the consistent estimator 4@’ 4/n. Further, we estimate p by
6in(M - 1)

and use these in (67) to get an estimate of the variance of 7. Failure to inflate the
usual RSWR estimate of the variance of 7, %, will result in underestimation of the
true variance.

Deaton (1997) provides numerical examples of the effect of ignoring p in the cal-
culation of standard errors of 7. He shows that for estimated food price elasticities
in Pakistani Villages, p is between .3 and .6, leading to underestimation of V(7) by
a factor greater than 2 for mean cluster size is 12. Design effects between 2 and 3.5
are very common in economic data, meaning standard errors for § calculated using
V’@) = % will be up to three-and-a-half times too large!

Kish (1965) provides extensive discussion of cluster sampling, including the case

of two- and three-stage cluster sampling and the appropriate variance formulas.
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2.6 Systematic Sampling

Systematic sampling is one of the most common techniques used in develop-
ment economics. In systematic sampling, the sampling units are (usually) arranged
in random order with respect to the variable of interest.6 Of the first A  units, one is
selected at random. Then every Ath unit is sampled in order. This sampling design
is the easiest to implement, because it involves drawing only one sample. Systematic
sampling can be thought of as a kind of one-stage cluster sampling. The population
is arranged into A™ clusters, each with n elements. One of these clusters is chosen
and every element within that cluster is sampled. For simplicity, we assume below
that there are N elements in the population and that N/A  is an integer. (In other
words, the N elements are exhaustively and uniquely assigned to the A clusters. each
of which has the same number of elements, n—an integer.)

Consider the finite population model
Yi=p+U; (71)

as in (1) where the data are randomly ordered. The population mean and variance
are defined as in section 2.1. If the population is divided into A" clusters, we can write

the model as.

Yij=pu+Uj,k=1,...,Kand j=1,...,N. (72)

6 Imagine. for example, hospital records by alphabetical order. If one wanted to survey hospital
patients, the sample could be drawn by choosing a random number between 1 and 10 and then
taking every 10th person after that. Presumably any medical conditions of interest covered in the
survey would be uncorrelated with a person’s last name. This method would be quite easy to teach
someone totally unskilled in survey methods.
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Our sample would consist of one randomly chosen cluster k, written as:
yi=p+u, j=1l..n (73)
The LS estimator of the mean, when cluster k is chosen, is

yk=ySYS=;Z Yjo (74)

i=1
which will be unbiased when N/k is an integer. Further
1 X
V(Usys) = E;@k — ). (75)
In general, we will not be able to estimate this variance. In the case where our data
consists of one systematic sample, the population mean, y, is unknown as are the re-
maining (A" — 1) unsampled clusters. In some surveys, re-sampling is possible. In this
case, information can be gathered about the within and across-cluster heterogene-
ity and an approximation for V(ysys) as a function of the intracluster correlation
coefficient, p:

V(Zsys) = = [1+p(n—1)]. (76)

sl
n

In general, if the data are randomly arranged with respect to the variable of inter-
est, systematic sampling should give broad coverage of the population, the estimate of
the mean should be unbiased, and the approximation of V(7gys) by assuming simple
random sampling will not be too unreasonable. If the data are clustered, and the
clusters ordered, then a systematic sample will perform better than either SRS or

clustered sampling. This follows because the systematic sample, picking every kth
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elements, will cover most, if not all, clusters. This very broad coverage will give a
precise estimate of the mean.

There remains much which has been written and much which can be said about
systematic sampling. It is perhaps the most widely used method in statistics. because
it is so easy to implement and so easy to teach to someone who knows nothing of
statistics. For more information on systematic sampling, see the chapter in Thompson

(1992) or the surveys by Iachan (1982) and Bellhouse ( 1988b).

2.7 Simulation: mean model

In this section, we present a summary of the results from a detailed simulation
of the mean model under complex sampling. The two primary objectives of the
simulation are: 1) to illustrate the effect of ignoring sample design in data analysis:
and 2) to ascertain the properties of our estimators under various sample designs
where there do not exist analytical results.

The first step in our simulation was the creation of several finite “populations.”
The populations created ranged in size from 50 to 20,000, with means ranging from
1 to 2000. They were drawn from an “infinite” population of randomly distributed.
normal numbers. From these finite “populations” we then drew n observations using
the sampling design in question. For the questions under consideration in this section,

the shape of the distribution is irrelevant, so only normal random numbers were
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considered. For analyzing other variables, such as the distribution of V(s?) considered
in Ullah and Breunig (1996), the shape of the distribution does matter and conclusions
based on simulations using only normally distributed populations should be made
with caution.

To demonstrate the first point, a sample of size n was drawn using the sample
design of interest (stratified, clustered, etc.), then 7 and V(%) were estimated using
the information on how the sample was drawn. Then. taking this same sample. and
ignoring the sample design, we have calculated Frowr and V(Yrswr)-le.. treating
the sample as if it were a random sample drawn with replacement. These values
are averaged over 1000 repetitions. We then compare the average Bias (y) and Bias
(rswr) and the ratio of the averages of the two variances, which can be interpreted
as the degree of over- or under-estimation arising from ignoring (or mis-specifying)
the sample design.

The second type of simulation we have undertaken, to answer the second question
raised above, involves drawing a separate sample for each sampling design of interest.
From these distinct samples, we calculate 7 and V(7) for each of the sample designs.
After r repetitions, we compute the average bias and the simulation variance of the
estimator for each design.

By way of example, let us consider a simulation of both kinds comparing sampling
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under finite population and infinite population from section 2.2. Recall that
Vans) = Zd = ViFnwn) (1 - 1) (1)
Usrs) = nE = Yrswr N/ “

Following the first method outlined above, we take 1000 samples of size n from our
population and calculate V(7ggs) using the fact that the sample has been drawn
without replacement from a finite population. Then we will calculate V(Yrswr) and
compare the ratio of the average of these two over the 1000 repetitions.

The ratio should be the inverse of the finite population correction. Indeed this
is confirmed in the results in Table 2.1. Results from the second type of simulation
are presented in Table 2.2. Here, two separate samples are drawn from the same
population—one under SRS, the other under sampling with replacement. Results for
10.000 repetitions are reported. As expected, the results closely approximate those in
Table 1. One way to interpret these results is that for the same sample size, sampling
without replacement is more precise than sampling with replacement. (Since the
variance of the estimator § under SRS, is on average, smaller.) We can also think
of the ratio as representing the “cost” of assuming that sampling is from an infinite
population when in fact sampling is from a finite population.

Tables 2.3 through 2.7b present comparisons between RSWR and stratified sam-
pling without replacement, conducted under the first method described above. In
Table 2.3, we consider two strata, each with a population of 1000, where a sample of

size n; is drawn from each stratum. Since n; %&mn,; and both strata have a population
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of 1000, the sampling probabilities are unequal. As we saw in section 2.3 above. the
unweighted estimator of 1 will be biased. As we can see from Table 2.3. the more
unequal the sampling probabilities, the greater the bias in the unweighted estimator.
Urswr, and the greater the ratio of mean squared errors. Most data in labor and
development economics is stratified and the most common case is unequal sampling
probabilities, either by design or because of different rates of non-response across
strata. Thus, as the simulation shows, a potentially serious bias problem exists even
in calculating a simple mean. The general intuition behind these results extends to
the regression case.

In Table 2.4 we consider the case of "spurious” stratification. A simgle population
of 200 is arbitrarily divided up into two strata. Then equal probability samples are
drawn from the two strata. Since we have equal probability sampling and the two
strata are identical, both condition (i) and condition (ii) of section 2.4 are met. so
there is no bias problem. And as we can see from columns 5 and 6, there is a small
gain in variance and mean squared error. This is due to the fact that we are using
sampling without replacement (which has lower variance) in both strata, and that
by drawing a stratified sample we have zero variance for elements in different strata.
From Table 2.4, we thus see that even when strata are identical, there can be some
gain in variance by selecting a stratified sample provided the samples are chosen
independently in the different strata.

In Tables 2.5 to 2.7, we present results from the stratified case, but with equal
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probabilities of selection in both strata. In Table 2.5, we see that even though Frswr
(unweighted) is unbiased under equal sampling probability, it is not efficient compared
to 7, In Tables 2.6 and 2.7, we consider across-strata heterogeneity in the mean and
the element variances separately, since both affect the ratio between Yrswr and Y.
In Table 2.6 we first consider the case where 63 = 63, but y; Apu,. Table 2.7 presents
the case where 0} /=03, but 4, = u;. We note that the increase in precision as
measured by the ratio of variances is increasing as the distance between the two
strata means, u; and u;, increases. It is not uncommon in development economics
to encounter stratified samples where the urban mean income is three times that of
rural mean income. In the case where i, = 200 and u; = 600. we see that this
can lead to an over-estimate of the variance of the population mean by a factor of
20. It increases for large sample sizes, because the finite population correction has
a proportionally larger effect. From Table 2.7, we see that stratification does not
improve efficiency when the strata have the same mean regardless of the difference in
within-stratum variance. The small increases in efficiency that we see are the result
of the increasing effect of the finite population correction as the sample size increases.
In other simulations, not reported here, we show that assuming a stratified structure
when the data does not have one, leads to no gains in efficiency. This result follows
intuitively from the results presented in Table 2.7.

Table 2.8a and Table 2.8b present the cost of ignoring the one-stage clustered

sample design and assuming that the sample is actually a RSWR. Here we have drawn
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a clustered sample from one stratum with a population of 1000. which is divided into
50 clusters, each of size 10. We present the ratio of variances: %gw%, where we
have calculated V(7,) using the estimated sample value of 5. We compare this to the
expected Kish Design effect (1 + (m — 1)p) given our knowledge of the true value of
p- p gives a slight under-estimation, which disappears as n — N.

Tables 2.9 and 2.10 present results comparing RSWOR (SRS), stratified sampling,
cluster sampling, and systematic sampling. We use the second method described
above for simulation.

Table 2.9 presents results from 5000 replications comparing SRS. clustered. and
systematic samples drawn from the same population. The last three columns compare
the variances of the different estimators. Systematic sampling performs best in the
simulation reported in Table 2.9. Since the data are ordered by cluster, the systematic
sample gives the broadest coverage of the population-taking at least one observation
from each cluster. (See section 2.5) As expected, clustered sampling gives the highest
variance for given sample size. Table 2.10 compatres stratified and systematic sampling
in a stratified population. Results are for 10,000 repetitions. The systematic sample
does not perform as well as the stratified random sample since stratification will more

evenly cover the population over repeated sampling.
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Table 2.1
Effect of Ignoring Sample Design (Sampling with Replacement)

Sample size:
Population s 10 20 50 100
size
50| 1L.11 1.25 1.67 X X

100 | 1.05 I.11 1.25 2.00 X
500 | 1.01 1.02 1.04 1.11 1.25
1000 | 1.00 1.01 1.02 1.05 I.11

Table entries show the degree of over-estimation
var(y powr )

var(Pgps)

of the variance of the sample mean:

Table 2.2
Efficiency Gains from Sampling Without Replacement
vs. Sampling with Replacement

Sample size
Population 5 10 20 50 100
size
50| 1.08 1.22 1.63 X X

100 | 1.063 1.082 1.24 1.98 X
500 | .993 1.009 1.054 1.12 1.253
1000 | 1.00 1.00 1.005 1.055 1.108

var(ypon )

-= averaged over 10,000 repetitions of each design.
varn(y g )

Entries in table are
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Table 2.3
Stratified Sampling with Unequal Probabilities

2 Strata: M, =200; o, =60;
K, =300; o, =175;

Penalty of not considering sampling structure

Sample size Bias y_, | Bias Ratio of Variances | Ratio of MSEs
(Stratum 1, 2) Vrswr Var(ypmr) ' Var(y, ) | MSE(Vygr )/ MSE(¥,)
(5,10) 0.94 17.97 1.46 1.81

(5,20) -0.13 30.11 1.15 2.99

(5,50) 0.30 41.62 0.60 4.75

(10,5) 0.24 -16.62 1.23 1.37

(20,5) 1.16 -29.68 0.72 1.97

(50,5) -0.99 -41.37 0.27 3.07

Population mean: x4 =250
N=1000 for both strata

n n
1 __2
N N

1 2
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Table 2.4
Stratified Sampling with Equal Probabilities:
“Spurious” Stratification

Sample sizes Population | Population Bias | Ratio of Ratio of
(Strata 1, Strata 2) | Mean Variance Var(y)/ MSE
Var(y, )

s, 5) 1 1.00 N 1.10 1.05
2 1.34 E 1.09 1.05
10 1.79 G 1.10 1.05
140 216.62 L 1.10 1.05
1215 3524.67 I 1.10 1.05

G

(10, 10) 1 1.00 I 1.24 1.12
2 1.34 B 1.27 1.14
10 1.79 L 1.24 1.12
140 216.62 E 1.24 1.12
1215 3524.67 1.24 1.12

(20, 20) 1 1.00 1.72 1.36
2 1.34 1.66 1.32
10 1.79 1.67 1.34
140 216.62 1.65 1.32
1215 3524.67 1.68 1.34

(30, 30) 1 1.00 2.48 1.74
2 1.34 2.48 1.77
10 1.79 2.57 1.78
140 216.62 2.48 1.74
1215 3524.67 2.52 1.77

Population:  Randomly divided into two strata with sub-population
means u, = u, = U

Population of both strata=100
Total Population: 200
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Table 2.5a

Stratified Sampling with Equal Probabilities:
Improved Efficiency for Unequal Strata Means

o,=0,=50

Penalty of not considering sampling structure
Sample sizes | Population means | Bias y= Ratio of Variances Ratio of
(Stratas 1, 2) | (Strata 1, Strata 2) | Bias 7. Var(y)/Var(y.) MSEs
5, 5) (200, 300) 8.6 2.20 1.56
(200, 400) 13.8 5.39 3.21
(200, 500) 5.6 11.64 6.12
(200, 600) 5.0 20.22 10.44
(200, 800) 4.5 43.15 22.86
(200, 1000) 2.73 74.95 37.82
(200, 1500) -11.4 187.33 92.98
(10, 10) (200, 300) 7.2 2.17 1.60
(200, 400) -10.0 5.31 3.18
(200, 500) -3.0 10.80 6.06
(200, 600) 243 18.94 9.68
(200, 800) 2.5 41.51 21.79
(200, 1000) -10.5 69.11 35.16
(200, 1500) -2.1 183.68 93.7
(20, 20) (200, 300) -16.0 2.16 1.54
(200, 400) -14.9 5.22 3.12
(200, 500) 49 10.86 5.89
(200, 600) 6.8 18.44 9.67
(200, 800) -1.7 40.89 22.03
(200, 1000) 0.2 68.06 34.86
(200, 1500) 1.03 174.16 86.20

Stratified sampling without replacement in each stratum.

2 Strata:

Total Population: N=2000
Population equally divided between two strata

. N
Population mean: Wl U, +

N,

N 2

1 1
Hy=7H +—-u,=u

2
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Table 2.5b
Stratified Sampling with Equal Probabilities:
Improved Efficiency for Unequal Strata Means

c,=0,=350

Penalty of not considering sampling structure
Sample sizes | Population means | Bias y= Ratio of Variances Ratio of
(Stratas 1, 2) | (Strata 1, Strata 2) | Bias v, Var(y)/Var(y,) MSEs
(50, 50) (200, 300) 2.2 2.20 1.61
(200, 400) -8.5 5.29 3.09
(200, 500) -5.2 10.93 6.11
(200, 600) -10.2 18.97 9.76
(200, 800) 1.2 41.88 21.54
(200, 1000) 0.3 69.58 34.51
(200, 1500) -3.58 179.50 90.10
(100, 100) (200, 300) 4.1 2.32 1.66
(200, 400) -1.3 5.54 3.28
(200, 500) 3.7 11.50 6.20
(200, 600) -3.8 19.81 10.05
(200, 800) -3.7 43.77 22.27
(200, 1000) 0.6 72.75 35.55
(200, 1500) 3.3 189.39 94.76
-0.21 5.08

Stratified sampling without replacement in each stratum.
2 Strata: with sub-population means x,, u, given above.

Total Population: N=2000
Population equally divided between two strata

. N 1 1
Population mean: —ATI#’ +Wz-p2 =5 +5'u2 =u
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Table 2.6
Stratified Sampling with Equal Probabilities:
Improved Efficiency for Unequal Strata Variances

4, = i, = 1000
Penalty of not considering sampling structure
Sample sizes Population o Bias y= Ratio of Variances | Ratio of
(Stratas 1,2) | (Strata 1, Strata 2) Bias y_, | Var(y,,)/Var(y,) | MSEs
o, 5) (2500, 3520) -12.3 1.01 1.00
(2500, 4909) 29.6 1.01 1.00
(2500, 6527) -13.7 0.99 0.99
(2500, 8089) 32.1 1.00 1.00
(2500, 9651) 13.4 1.01 1.00
(2500, 41696) -12.9 1.01 1.01
(10, 10) (2500, 3520) 2.5 1.01 1.01
(2500, 4909) 9.2 1.01 1.00
(2500, 6527) 2.1 1.01 1.01
(2500, 8089) 22.6 1.01 1.01
(2500, 9651) 14.3 1.01 1.01
(2500, 41696) 13.2 1.01 1.01
(20, 20) (2500, 3520) 25.3 1.02 1.01
(2500, 4909) 18.7 1.02 1.01
(2500, 6527) 209 1.02 1.01
(2500, 8089) 21.9 1.02 1.01
(2500, 9651) -5.0 1.02 1.01
(2500, 41696) -6.5 1.02 1.01
(50, 50) (2500, 3520) -5.5 1.05 1.03
(2500, 4909) 3.5 1.05 1.03
(2500, 6527) 2.1 1.05 1.03
(2500, 8089) 18.2 1.05 1.03
(2500, 9651) -6.9 1.05 1.03
(2500, 41696) -4.9 1.05 1.03

Stratified sampling without replacement in each stratum.

2 Strata: with sub-population variances o,, o, given above.
Total Population: N=2000

Population equally divided between two strata
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Table 2.7a
Stratified Sampling with Equal Probabilities:
Improved Effeciency for Unequal Strata Means and Variances

Penalty of not considering
sampling structure
Sample sizes Population means | Bias y= | Ratio of Variances Ratio of
(Stratum 1, 2) | (Stratum 1, 2) Bias y_ | Var(¥)/Var(y,) MSEs
s, 5) (200, 300) 0.33 1.59 1.30
(200, 400) 0.29 2.29 1.64
(200, 600) 0.12 3.53 2.24
(200, 800) 2.22 5.46 3.19
(200, 1000) 0.17 5.10 2.96
(200, 1500) -.81 8.88 5.05
(10, 10) (200, 300) -0.61 1.58 1.29
(200, 400) 0.09 2.18 1.60
(200, 600) 0.29 3.51 2.24
(200, 800) -0.19 5.41 3.20
(200, 1000) -3.41 4.79 2.85
(200, 1500) 0.56 8.33 4.80
(20, 20) (200, 300) 0.07 1.59 1.30
(200, 400) -0.38 2.17 1.58
(200, 600) 0.22 3.42 2.22
(200, 800) -1.67 5.28 3.13
(200, 1000) 0.41 4.76 2.92
(200, 1500) -0.40 8.42 4.81

Ratios in last two columns show improved efficiency from using stratified mean estimator
when both strata means and variances exhibit heterogeneity between strata.

Stratified sampling without replacement in each stratum.
2 Strata: with sub-population means x,, 4, given above.

Total Population: N=2000
Population equally divided between two strata

. N N 1 1
Population mean: _ATl'u’ +72'u2 = E#' +5y2 =pu
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Table 2.7b
Stratified Sampling with Equal Probabilities:
Improved Effeciency for Unequal Strata Means and Variances

Penalty of not considering
sampling structure
Sample sizes Population means | Bias y= | Ratio of Variances Ratio of
(Stratum 1, 2) | (Stratum 1, 2) Bias y, | Var(y)/Var(y,) MSEs
(50, 50) (200, 300) 0.19 1.65 1.33
(200, 400) -0.75 2.22 1.63
(200, 600) 0.06 3.49 225
(200, 800) 0.07 5.42 3.26
(200, 1000) 0.71 4.88 2.82
(200, 1500) -0.66 8.45 4.67
(100, 100) (200, 300) -0.20 1.74 1.36
(200, 400) 0.15 2.37 1.67
(200, 600) 0.05 3.68 235
(200, 800) 0.26 5.97 3.32
(200, 1000) -0.21 5.08 3.07
(200, 1500) -0.40 8.91 481

Ratios i last two columns show improved efficiency from using stratified mean estimator
when both strata means and variances exhibit heterogeneity between strata.

Stratified sampling without replacement in each stratum.
2 Strata: with sub-population means u,, y, given above.

Total Population: N=2000
Population equally divided between two strata

. N N 1 1
Population mean: VI#‘ +Wz-,u2 =5 H +—2—;12 =u
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Table 2.8a
One-stage Cluster Sampling Without Replacement:
Effect of Changing Values of p

No. of Total True Pop | » Ratio of Expected
clusters sample size | Pop. p Variances Kish
sampled (c) | (n=c*m) Mean Var(y,,)/Var(y) | Design
effect (d)

5 100 1000 | .12 .088 | 3.13 3.28

A7 A3 5.00 4.23

.26 .20 6.48 5.94

44 344 | 7.24 9.36

.48 .38 10.02 10.12

.64 519 | 14.44 13.16
10 200 1000 | .12 1 2.39 3.28

A7 15 3.89 423

.26 .24 5.78 5.94

44 41 10.36 9.36

.48 45 11.78 10.12

.64 .59 12.85 13.16

Column 6 is “design effect” in simulation.
Column 7 gives the expected design effect given the estimated value of r.

Sampling with equal probabilities

1 Stratum: Total population of stratum=1000

50 Clusters: 20 elements in each cluster (balanced clusters)

Vara) = (C25)%  where 52 =L AL _—)2

ydn C c 'S c— l = yc y
2
or =34 where d is the Kish (1965) design effect 1+(m - 1)p

n
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Table 2.8b
One-stage Cluster Sampling Without Replacement:
Effect of Changing Values of p

No. of Total True |[Pop | 2 Ratio of Expected
clusters sample size | Pop. p Variances Kish
sampled (c) | (n=c*m) Mean Var(y,.)/Var(¥) | Design
effect (d)

20 400 1000 ] .12 17 1 3.25 3.28

17 .169 | 4.22 4.23

.26 .257 | 5.93 5.94

.44 434 | 947 9.36

.48 .47 10.28 10.12

.64 .62 13.49 13.16
25 500 1000 | .12 119 | 3.69 3.28

17 .169 | 4.29 4.23

.26 .256 | 5.42 5.94

.44 .439 | 9.69 9.36

.48 .48 10.09 10.12

.64 .63 13.64 13.16

Column 6 is “design effect” in simulation.
Column 7 gives the expected design effect given the estimated value of'r.

Sampling with equal probabilities

1 Stratum: Total population of stratum=1000

50 Clusters: 20 elements in each cluster (balanced clusters)

C-c.s? 1 < :
Var(y,,) = —-  where s2=—>S'(5. -5
r(yclu) ( C )C u C—lg(y‘ y)
2
or =24 where d is the Kish (1965) design effect 1+(m—1)p

n
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Table 2.10
Systematic Sampling Compared with
Stratified Systematic Sampling

Sample | Strata means | Strata | Bias | Bias | Ratio of Ratio of
size Pop. | J, Yos | Variances MSEs
var(y,,)/Var(y,)

5 (10, 100) 50 0.01 |-0.00{0.45 0.73
(2, 900) 100 3.21 |-0.09 | 1.06 1.03
(1000, 1000) | 500 0.09 |-0.54 | 1.05 1.02

10 (10, 100) 50 -0.02 { 0.00 | 0.62 0.81
(2, 900) 100 -4.67 | 0.28 | 0.62 0.81
(1000, 1000) | 500 1.28 | 1.94 | 1.36 1.18

25 (10, 100) 50 0.01 |-0.00{0.24 0.62
(2, 900) 100 4.11 |-3.11[2.55 1.78
(1000, 1000) | 500 -0.17 [ -0.04 | 1.46 1.23

S0 (2, 900) 100 1.89 | 0.30 | 1.89 1.44
(1000, 1000) | 500 -0.16 { 0.77 | 1.74 1.37

100 (1000, 1000) | 500 -0.13/0.14 | 1.03 1.02

N
— h -— . -
Vo = ZT Y sample of size n drawn without replacement

N
( ) Possible samples
n

2 n
Fos = (LZZ Yu  sample of size | drawn, then every N/n-th unit sampled

h=] i=l

N Possible samples
n
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2.8 Conclusion

As seen in this chapter, problems of inference and estimation arise when data are
gathered under a complex sampling design. The simulation demonstrates that these
are of more than trivial interest. Unequal sampling probabilities are the rule, not the
exception, and treating such data as having been drawn under RSWR will lead to
biased estimators. Even where the disproportion is 2 to 1, this leads to large bias as
shown in Table 2.3.

As different strata will usually have different parameter means. ignoring stratifi-
cation will lead to large overestimates of the true variance of our estimate of u A
recent survey of income in Kenya showed that average rural income was one-third
that of average urban income. Ignoring stratification when calculating a population
mean in this case will lead to confidence intervals which are 20 times too wide. The
exact opposite problem occurs in clustering. Intra-class correlation coefficients of .5
are common in developing country studies. The simulation shows that ignoring the
sample design leads to an underestimate of the variance by a factor of 10-or more if
the average cluster size is greater than 20.

Bias problems and mis-estimates of standard errors are exacerbated in more com-
plex sample designs which combine different aspects of stratification, clustering, and

systematic sampling. And clearly the same problems will arise in the regression case.
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The simulation demonstrates that assuming away sample design effects as trivial is
unjustified. Instead, more careful attention should be paid to using available meth-
ods of analysis and information on sampling to construct unbiased. and more precise.
estimates.

I would conclude this section by providing further proof of both the importance
of the issues discussed above and the frequent mis-understandings created by survey
sampling design. Consider the following quote from a Federal Trade Commission
report on proposed United States Department of Agriculture regulations concerning

the contents labeling of milk:

"Furthermore, sampling from the inspection lot, rather than some larger
production lot, would not cause the statistical finding to be biased against
the manufacturer. Of course, it is possible that an inspection lot is sig-
nificantly more underfilled, on average, than some larger set of packages
of which it is part. But it should be just as likely that an inspection lot
is significantly more overfilled, on average, than the large production lot.
Data from the milk study support the conclusion that inspection of pack-
ages in retail stores will not result in any bias against the dairy industry.”

(Federal Trade Commission, 1997)

The authors of the report correctly claim that bias will not be a problem here.

However, they completely ignore the problems of standard error estimation from the
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clustered sampling which is described here. Even worse. it turns out that the actual
regulations (and proposed fines) will be based upon the number of standard errors
away from the labelled quantity the actual quantity is found to be. But if that
standard error is being estimated from a clustered sample, it may be underestimated
by 300% or more as we saw in section 2.5!

This failure to deal with the clustering in the data and its effect on the estimated
standard errors will have an important policy impact. Furthermore. this tvpe of igno-
rance about the relevance of the survey sampling literature is rampant in economics.
Economists and econometricians need to pay more attention to the nature of the

survey design when analyzing data.
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3 INEQUALITY MEASUREMENT
FROM SURVEY SAMPLES

Measuring inequality and poverty and making comparisons between regions, between
countries, and across different time periods are important activities for governments.
aid organizations, and economists. Program and policy goals, both in developing
and in over-developed nations, often include poverty or inequality reduction. Test-
ing claims of policy success or failure and achieving a quantitative understanding of
poverty and inequality are thus important objectives. Problems that arise include the
difficulty of measurement and data collection and basic philosophical questions about
what constitutes inequality. Index number measures of inequality are frequently em-
ployed because they give a simple aggregate of a complex income distribution. allow-
ing easy comparison across different states of time and different regions. Many such
indices have been proposed. Most inequality indices are ratios of random variables,
as is shown below. One problem that arises is that these measures will be biased in
small samples. In section 3.3, we show that this bias is potentially quite large.

We can think of most inequality indices as being straightforward extensions of
the mean. But rather than summing values of y; we are calculating functions of
Yi- As with the mean model, if we calculate inequality indices ignoring the sample

structure of the data, our estimators may be biased. This will be a problem when

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.com



we face a sample gathered through unequal probability sampling, whether stratified
or not. Another problem in the inequality and applied literature is the frequent lack
of inference when inequality measurement is conducted. Inequality indices are often
reported, as are their evolution over time. Confidence intervals, however, are rarely
given. Without inference, the statistical significance of changes in these indices is
unknown. The lack of reporting of confidence intervals for inequality measures partly
stems from the difficulty of implementing the results on the distribution of inequality
indices and partly from an ignorance that such indices are random variables which
have their own distributions. We will discuss some of the literature where people have
attempted to create confidence intervals for inequality measures. We will then show

how these results change when data are stratified and clustered.

3.1 Inequality measurement using indices: some issues

We define an inequality index as a function which maps from the space of income

distributions, ©, to the real line,
I - 9—-R

such that as inequality (however defined) increases, the value of I will increase.
Clearly, different definitions of inequality will lead to different definitions of the func-
tion /. Two approaches have generally been taken in the literature: 1) identifying a
social welfare function that incorporates our judgments on inequality and transform-
ing this welfare function into an index number; or 2) identifying a list of properties
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to which we expect our inequality index to adhere and then choosing an index based
upon the particular set of axioms that we find most desirable” .

Here, the social welfare function (SWF) is not to be seen as a function that is
being maximized by any agency or polity. Instead. it is an aggregator which turns a
distribution of income into a number representing the judgment of that distribution
from a particular perspective.

Dalton (1920) first expressed the connection between social welfare and the mea-
surement of inequality. Atkinson (1970) developed formally the concept of looking at
inequality measurement from a social welfare perspective. Atkinson’s index (see (83)
below) corresponds to a SWF which exhibits constant relative inequality aversion.
(The parameter € captures the degree of inequality aversion.) Sen (1992), among
others, discusses this approach in some depth.

Another approach to inequality measurement is to specify axioms that an inequal-
ity index should satisfy. After specifying a number of desirable axioms, one then goes
about finding an index which will correspond to the desired axioms. Frequently pro-

posed axioms include:

¢ Symmetry (Anonymity): If any two individuals in the economy trade places in
the income distribution, 7(-) should remain unchanged. (In other words, only

the list of incomes matters, not whose name is alongside which income.)

7 There is a third approach which seeks to develop direct measures of well being, such as the
Human Development Index. and which lead to inequality comparisons across different function-
ings/capabilities. See Sen (1992).
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® Scale Independence: If y; = ax; for every i = 1,..., N, then I(f(y)) = I(g(z))
(ie., our index of inequality will be the same if income is measured in rupees

or in dollars.)

e Proportionality: If a proportionate number of persons are added at all income

levels, then 7(-) should remain unchanged.

* Principle of transfers: Define a progressive mean-preserving transfer (MPT) as
one in which income is transferred from a rich person to a poor person. but not
so much income that the previously rich person becomes more poor than the
poor person originally was. Then the principle of transfers states that if g(y)

can be created from f(y) by a progressive MPT, I(g(y)) < I(f(v)).

This last axiom is sometimes called the Pigou-Dalton principle of transfers.

Other possible axioms include limiting the range of the index to an interval (such
as [0,1]), or requiring the index to be decomposable by income groups or types.
We may also be interested in other types of transfer properties. We may not care
much about slight increases in inequality at higher parts of the distribution if they
are compensated by relatively large decreases in inequality in the lower part of the
distribution. Some authors have attempted to require various restrictions on transfer
sensitivity at different levels of income. For examples, see Kakwani (1980) and Davies,
Green and Paarsch (1998).

Blackorby and Donaldson (1978) bridge the gap between these two approaches by
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showing how any inequality index can be transformed to reveal its underlying, implicit
social welfare function. They also demonstrate how different inequality indexes weight
different income transfers unequally. Thus the choice of inequality measure implicitly
reflects a judgment on the overall picture of inequality as well as a judgement about
the welfare implications of transfers at different levels of income.

The advantage to both of these approaches is that once a particular index has
been chosen (or derived from the preferred SWF) the index will exhaustively rank
all possible income distributions. Another advantage to the above two approaches is
that they force an explicit (or implicit, but recoverable) definition of inequality. The
obvious disadvantage of the above approaches is that disagreement about the axioms
or about the structure of the SWF will lead to different indices which may contradict
each other for certain income distributions.

Having touched on a few issues, I will not attempt to survey the vast litera-
ture on measuring inequality, constructing inequality indices, the theory of inequality
measurement and inequality indices. For the economist, Kakwani’s (1980) book is
probably the most useful. The most commonly used indices are treated in depth,
and interesting examples are provided which are quite illustrative. Cowell (1995) is
also useful. For a non-technical approach, I suggest Coulter (1989). This book was
written from a non-mathematical veiwpoint and its intended audience is any social
scientist who is interested in looking at distribution. With few equations, but many

examples, it manages to cover the theory and measurement of inequality quite nicely.

69

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



3.2 Inequality indices

There is a considerable amount of controversy in the simple question: what is income?
We will abstract from that problem and issues of whether inequality is best considered
over income or some potentially smoother (and potentially more welfare-consistent)
measure such as consumption. Below, I will use the word income as a general term
which may be taken to mean consumption or income including imputed income from
household production, etc. The important point is that the measure of ”income”
should be a reasonably good measure of welfare.

We will use the model from (1) above. Consider a finite population of size N and

the variable income, Y, allowing us to write the population model as
Y;=M+U",i=1,....N 78)

where Y; is income of the i-th population unit (which may be a household or an
individual), U; is the ¢-th error, and 4 and o are the population mean and variance.

respectively, given by

Y- , 0 = (Y p)3. (79)

i Mz

1
N

™Mz

_1
L=%N:

Ui, sum to zero by the definition of 1 and are thus not products of some data generat-
ing process, but rather deviations from the common population mean as it is defined

above.
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We can define the following inequality measures for the population:

the coefficient of variation (CV)
c

CV=—; (80)
73

Theil’s two measures of inequality (I, and Ip)

1 X
Ni=p"'5 3 ¥iln(Y) — In(u), (51)
=1
and
1 N
Io=1In(k) - 3 3~ In(¥); (82)
i=1
and Atkinson’s measure
1A\
Ae)=1—-u"'| = e )
() =1-4 (Ngx ) (83)
When € = 1 in Atkinson’s measure, it takes the form
N
&> In(Y;)
A(l)=1- u"eN-‘; ) (84)

All of these measures meet the four axioms suggested for inequality indices above.
We can think of these as being minimum criteria for a reasonable inequality index.
Iy and I, were first introduced by Theil (1967). They are based upon entropy and
information theory from engineering. The CV has been around for a long time as a
measure of inequality and spread, whose property of scale independence has long been
recognized® . Atkinson (1970) introduced A(e), deriving it directly from a social wel-

fare function that depends positively on total income and on the equally distributed
8 CV is discussed further in section 3.3 below.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



equivalent level of income captured by the choice of € and the function

1 N

=
(ﬁ > Y,-‘-‘) . (85)

i=1

Larger values of € imply higher aversion to inequality. If € = 0, inequality will al-
ways be zero. This is a measure which is completely insensitive to how the income
is distributed in society. As € — oo, Atkinson’s measure becomes Rawlsian—it is
only concerned with the level of income of the poorest person in society. (See Rawls
(1972).) Choice of € is not without controversy. Atkinson. in his own work. used
Kuznets (1963) data and demonstrated how different choices of € resulted in con-
siderably different rankings between countries in that sample. Whether there exists
some criteria upon which to base an appropriate choice of € remains to be seen.

Below we will discuss estimation and inference for inequality indices using the

above measures as examples.
3.2.1 Inequality indices: Estimation
Given some sample of data
yi=/"+ui-i=19---9n (86)

we can estimate the above inequality measures by replacing population values with
their sample estimators:
the coefficient of variation (CV)

CV = (87)

QA&
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Theil’s two measures of inequality (I; and I;)

f=7"23 wla(w) - @) (88)
and
lo=1ng) - 2 3" ln(:): (59)
and Atkinson’s measure
Ao =1-7 (1iy:*)'l—'- (90)
n =
When € = 1 in Atkinson’s measure, it takes the form
QD) = 1-get T (91)
= 1—eTo (92)

The estimators in (87) to (92) will be consistent. but as they are ratios of random
variables. they will not be unbiased. To see this, we note that all of the above indices
(as well as many other commonly used income inequality measures) can be written

as a function of the mean and some other function, g(y), of income

I(y) = F(g(v), ). (93)
Our sample estimate of I(y) will then be

I{y) = F(§),9) (94)

where g(y) will take the general form g(y) = n"! i g(y:)-
i=1
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From Cramer (1946), the expected value of [ will be of the form
N 1
Ef=F+0 (;) (95)

where Fp is the function F' evaluated at Eg(y) and u. Consistency thus follows
directly by noting that n].i._’nt_;o I = I. As we will see below in section 3.3. these terms of
o (i) may be significant in non-normal populations, even for values of n which we
usually think of as being "large.”

We will use (93) and (94) below to derive estimates of standard errors for inequality
measures. They will also be useful for writing inequality measures in a manner which

allows us to adjust for the bias in (95) when samples are small.

3.2.2 Inequality indices: Inference

Ore of the most important reasons to calculate inequality indices is to use them as a
policy analysis tool to compare across regions, across countries, and within the same
country/region over time. Indeed, an inequality number in and of itself is almost
useless. The important questions always tend to be of the nature. "has inequality
decreased over time?” or ”Are the policies in country A more conducive to equality
than those of country B?”. It is almost scandalous, therefore, how little attention is
paid to inference and the construction of confidence intervals for inequality measures.
How can such comparative questions be answered without some sense of how much

change in a measure is significant change?
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There has in fact been a substantial amount of theoretical work on inference for
inequality measures. But a quick perusal of much of the applied literature shows
that it has not been heeded. Nygard and Sandstrom (1981) develop asymptotic stan-
dard errors for several dozen inequality measures. Kakwani (1990) develops standard
errors using a similar method for the Gini coefficient, the entire class of decompos-
able measures, and the Theil’s index. Confidence intervals for CV were published
by Cramer (1946). Gastwirth (1974) developed asymptotic standard errors for the
relative mean deviation. Sandstrém (1983) devoted an entire monograph to inference
for the Gini coefficient and other measures related to the Lorenz curve. Nygard and
Sandstrom (1985) considered the Gini coefficient and Theil’s measures. Other work
on the Gini coefficient includes that of Gastwirth and Gail (1985) and Gastwirth.
et. al. (1986). Cowell (1995) gives what he calls "rule of thumb” estimates of stan-
dard errors, but these are based on underlying distributions (such as normal) which
are unlikely to hold for income distributions. Cowell, however, does not provide any
theoretical nor empirical justification for why these might be good ”rules of thumb.”
Nygard and Sandstrom (1981) cite a paper by Nygard (1981)? , in which violations
of nop-normality in the Finnish income distribution are shown to be quite great and
result in serious mis-estimation of standard errors derived under the assumption of a

normal distribution of income.

9 This manuscript is unpublished and apparently not translated from the Finnish.
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Here we follow the approach of Cramer (1946). This has also been called the §
method by Rao (1973). Given that we can write the inequality measures above in
the form (93), we can make use of the following result from Cramer (1946, p. 353)

Lemma 1 Given a function G(hy(z), he(x)) which is continuous and has continuous
first and second derivatives and meets certain other regularity conditions.

oG oG
Ohi(z) Bhy(x)

Vm-<G>=Vm~(hl(z)>( ) +2Cou(hy, hy)

oG
Ohy ()
2
+Var(ha(z)) (%) +0 (m,%) .

The partial derivatives, a,?‘c(:x) and a;?:(:z) , must be evaluated at the points E(h(z))

and E(h;(x)). In order to implement this result for income inequality measures, the
regularity conditions imply that all incomes must be positive. If we have any negative
incomes in our sample, we must therefore normalize so that all incomes are greater
than zero. I have found in simulation that the standard errors for A(e = 1) and Theil’s
two measures, all of which use logs of income, may behave strangely when there are
incomes less than 1 in the sample. Some normalization to avoid this problem is
therefore suggested.

Cramer also demonstrates that under fairly general conditions the function G (+)
above will be asymptotically normally distributed. We can thus make use of these
two results to calculate asymptotic variances for our inequality measures, conduct

inference and build confidence intervals.
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Using (93) and Lemma 1, we have

2
Var(f) = VerGw) (50) +20g) el g5
+Var(y) (%) +0(#).

In order to implement this result, we need to re-write the inequality measure of
interest in the form [(y) = F(g(y),7). As an example, consider the coefficient of

variation. The population coefficient of variation is

cv=2
7
The sample estimate is
o S sz% 1}2_?212
CV==-=|5]| =|—— 97
- (5) - (59 e

where 3; = + 2 y? is the sample, non-central second moment. (This is our §(y) in

(96).)

For the CV/,
or(y) _ 1
d9(y) ~ 2on (98)
Ofy) _ _ B _ 1 o
&  our o 99)
As we saw above, in RSWR
0.2
Var () = —. (100)
n
7
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The Var(g(y)) can be found by writing

Var(s) = E|[f - EB| (101)

1 2
E[ Yo -u -

Under RSWR, this provides

~ 1
Var(B) = —{(m+3)0* +4u%0® + po*y — o'} (102)

_ 1 4, 4,22 3
= - {(72-4-2)0' + 4u”e” + duo 71}.
Likewise, the Cov(f3s, 7) can be shown to equal
~ 1
Cov(By,7) = ~ [o° + 2u0”]. (103)

The derivations of Var(3;) and Cov(/3, 7) are given in Appendix B.

Combining (97) through (103) yields, upto O(2)

o~ 1 0’3‘7] ot
W)= = 2y — _ i
Var(CV) - { (72 +2) w2 + “4} (104)
We can also write this in terms of the coefficient of variation itself
— V)2 2
Var(€V) = (Cn ) { 7’: —(CV)m + (CV)'*’}. (105)

If we impose the assumption of normality of the distribution of income, then v, =

v2 = 0, and we have

(<125
4in

Var(CV) = [2+4 cvy?] (106)
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which matches Cowell (1995, p. 118). However, since v; and v; are easily computed
with any standard software, and since income distributions are nop-normal (and fre-
quently highly so), it doesn’t appear sensible to use this approximation.

Cramer provides another equivalent version of the variance of the coefficient of

variation

3 is the cth non-central moment of Y. In practice we can consistently estimate the
variance by replacing 2 with ¥ and 3. with 3, = %ny in (107) or by replacing CV
with €V in (105).

The same procedure that we followed for the coefficient of variation can be em-
ployed to derive the variances of I, I}, and A(e). Below we provide Kakwani’s (1990)

results for the variance of the inequality measures we are considering,.

Var(Io) = g + E (tz) — (t)* - % (t — pto) (108)

t+p)’c® 20t +p)

- 1 2
Var(l) = 5 [B(t) - @)°] + == S (ta—ph)  (109)
Var(A(e)) = #2(1;_6) (o)™ (az-2e — i) (110)
2 2 — :—t_:
+;; (a1—e) ™ — ‘-—“(:?1 -—)e) (a3 — pai)
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where

1 N
to=+ ; In(Y;) (111)
1 N
= N ;Yiln(Y;) (112)
1 X 2
t2= 5 > (ln(¥})) (113)
=1
1 X 2
ts =5 2 (Hiin(?)) (114)
1=}
1 L,
te= ;Y In(Y;) (115)
and
o ! NY"“ (116)
l— = 5 i
Ni=l
1 X, -
(12_€=N;K (11()

etc. In practice, we can replace these with their sample analogs and get consistent
estimators for the variance!© .
For Atkinson’s measure, when € = 1, we can use (92) to write the variance of AQ1)

in terms of Jy. In general to find the variance of a function of the form fg(x)), we

10When € # 1 the expression in (110) is not valid for the variance of Atkinson's measure—see below.
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write the Taylor’s series expansion

f(g(z) = f(g0(z)) + f'(g0(x)) (9(2) — go(z)) + ... (118)

where (go(z)) = E [(9(x))] . Then,

flg(z) — f(go(x)) = f'(go(x)) (9(2) — go(x)) + ... (119)

and
E[f(9(z) — F(g0(=))]* = (f'(90(=)))* E [g(z) ~ go(=)]* + ... (120)
Var(f(g(z)) = (f'(90(2)))” Var(g(z)) (121)

In this case, Var(g(z)) = Var(l,) and (F(g0(2)))? = e~%. So when e = 1
Var(A(1)) = Var(ly)e~%P. (122)

Once we have calculated the estimated variance of the inequality measure. 4, we
can exploit Cramer’s result (Cramer, 1946, p. 367) that \/n (5 - 9) is asymptotically
normal to build confidence intervals around our estimate, §. An asymptotic 95%

confidence interval may be built as
9 +1.96,/Var(8). (123)

For comparison between two inequality estimates from different countries or in dif-
ferent years, the asymptotically normal test statistic
6, — 0,
\/Var(é]) + Var(6z)

n n2

(124)
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will have zero mean and variance one and can thus be used for hypothesis testing.
Without providing the details, we note here that the same approach can be used
for poverty measurement. For example, for the Foster-Greer-Thorbecke family of

measures,

P(y:) = (2)‘. (125)

-
~

where z is the poverty line and g; is the poverty gap for a household or individual below
. the poverty line. Assuming an exogenously given poverty line, we can write this as a
function of 7 and f(y;) = ¢; = y; — = and following the method above. See Kakwani
(1980) for an excellent review of inequality/poverty measurement. Ravallion (1994)
and Sen (1992) also provide excellent reviews. These measures were first introduced

by Foster, et. al (1984).

3.2.3 Simulation

The asymptotically normal standard errors presented above may give poor approxi-
mations for highly non-normal data or for small samples. We conducted a simulation
study of the effects of sample size on these approximations for both normal and non-
normal populations. For the normal data, the simulation was conducted by drawing
random numbers from a normal distribution with mean 100 and variance 20. This
leads to a CV of .2 for the population, which as seen in Table 3.1, is estimated with
only small bias which diminishes as the sample size grows. The data was truncated

at y=2. Any values of y less than 2 were made equal to 2. Since this is almost 5
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standard deviations from the mean, such occurrences were quite rare. This truncation
was taken to avoid the problem mentioned above whea incomes are less than one.

For the log-normal data, numbers were generated based upon a normal distribu-
tion following the method of Evans, Hastings and Peacock ( 1993). Given a standard
normal N(0,1) variable,

L = me"N@ (126)

will be lognormally distributed with median m and variance of logL. o*. We chose
to keep the population value of CV identical as in the normal case. The standard
deviation of the variable L is m\/m and its mean will be me3°”. Setting the
mean to 100 and the standard deviation to 20 gives two equations with two unknowns
and solving for o and m gives o = .198 and m = 98.058. Plugging these values into
(126) allows generation of log-normal random variables.

Tables 3.1 through 3.5 summarize the results from this simulation. Column six
on each table provides a ratio of the estimated variance to the simulated variance
over 1000 repetitions. The first thing to notice is that the variance (both true and
estimated) diminishes as sample sizes increases. The problem of mis-estimation for
small samples varies greatly with the inequality measure considered. Also, the ap-
proximations for the variance used above may give under or over-estimation. For a
sample of size 10, the estimated variance for CV underestimates the true variance by
about 40%. For Theil’s first measure, 7(1), the estimated variance is an overestimate
of the true variance by a factor of 140! For sample sizes of 5000, the asymptotic
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approximation of variance performs well for all of the measuses considered. Notice
that for Theil’s first measure, however, the variance is over-estimated by 250% even
for sample of size 1000. Kakwani (1990), for example, uses these approximations to
conduct inference for samples of around 300, so his results wust be considered with
caution.

The results for the lognormal populations are quite similar to the normal case.
However, as we expect, the approximations are worse for small samples than in the
normal case. As sample size grows to 5000 however, the noral approximation works
quite well for all of the measures considered. The degree of skewness considered here
N = (e"2-+-2)(ecrz - 1)5 = .608 is quite small!' The degree of under/over-estimation
of the variance will increase as the coefficient of skewness increases.

In the next section, we discuss the problem of unbiased estimation for inequality
measures in small samples. In section 3.4, below, we will consider first the case
of random sampling without replacement and compare it to random sampling with
replacement considered above. In section 3.5, we discuss estimation and inference
in the presence of stratification. In section 3.6, we discuss the effects on inference
when clustering is present in the data. In section 3.7, we give an example where both
stratification and clustering are present and demonstrate how our analysis changes
when we take into account the sample structure of the data. Im section 3.8, we

conclude this portion on inequality measurement.

11See the example from Kenya in section 3.3 where the sample estimate &f the coefficient of skewness
is 20.74.
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Table 3.1
Simulation Results Comparing Asymptotically Normal
Variance to True (Simulated) Variance

CoefTicient of Variation

Normal distribution
Var(CV)/
Sample size Cv Var(CV) Var»(CV) Varx(CV)
10 0.19654 0.001555 0.002375 0.654607
20 0.197626 0.000881 0.001143 0.770922
50 0.198907 0.000395 0.000451 0.876503
100 0.19989 0.000208 0.000223 0.932879
500 0.200331 4.35E-05 4.36E-05 0.998416
1000 0.199873 2.15E-05 2.09E-05 1.025054
2000 0.199882 1.08E-05 1.08E-05 1.001189
5000 0.199952 4.32E-06 4.03E-06 1.072036
Log-normal distribution
Var(CV)/,
Sample size CVv Var(CV) Var,»(CV) Var,x(CV)
10 0.192288 0.001244 0.00265 0.469363
20 0.196894 0.000862 0.001159 0.74414
50 0.199529 0.000408 0.000443 0.922061
100 0.199634 0.000219 0.000241 0.910056
500 0.200253 4.65E-05 5.07E-05 0.916056
1000 0.199792 2.31E-05 2.28E-05 1.014029
2000 0.200173 1.17E-05 1.30E-05 0.900932
5000 0.200002 4.66E-06 4.89E-06 0.953541
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Table 3.2
Simulation Results Comparing Asymptotically Normal
Variance to True (Simulated) Variance

Theil’s Measure: I(0)

Normal distribution
Var(1(0))/
Sample size 1(0) Var(1(0)) Var»(1(0)) Var..(1(0))
10 0.019833 0.000522 0.000131 4.000432
20 0.020328 0.000152 5.90E-05 2.585689
50 0.020904 3.85E-05 2.43E-05 1.586897
100 0.021257 1.60E-05 1.25E-05 1.279772
500 0.021491 2.73E-06 2.61E-06 1.045818
1000 0.021355 1.28E-06 1.17E-06 1.094934
2000 0.021388 6.36E-07 6.15E-07 1.033893
5000 0.021401 2.52E-07 2.29E-07 1.103084
Log-normal distribution
Var(1(0))/,
Sample size 1(0) Var(1(0)) Var,(1(0)) Var.(1(0))
10 0.017687 0.000452 8.29E-05 5.45218
20 0.018684 0.000134 3.83E-05 3.498581
50 0.019384 3.09E-05 1.45E-05 2.136173
100 0.019494 1.17E-05 8.09E-06 1.445888
500 0.019632 1.72E-06 1.66E-06 1.037388
1000 0.019569 8.12E-07 7.65E-07 1.061461
2000 0.019632 4.02E-07 4.31E-07 0.933526
5000 0.019608 1.57E-07 1.65E-07 0.953766
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Table 3.3
Simulation Results Comparing Asymptotically Normal
Variance to True (Simulated) Variance

Theil’s Measure: I(1)

Normal distribution
Var(I(1))/
Sample size I(1) Var(I(1)) Var,m(1I(1)) Varu(I(1))
10 0.018889 0.01303 9.38E-05 138.9854
20 0.019473 0.003217 4.64E-05 69.30649
50 0.020006 0.000524 1.92E-05 27.35546
100 0.020312 0.000137 9.78E-06 13.95553
500 0.020498 7.04E-06 1.96E-06 3.582963
1000 0.020395 2.22E-06 9.11E-07 2.434338
2000 0.020413 7.96E-07 4.75E-07 1.676699
5000 0.020428 2.43E-07 1.78E-07 1.367596
Log-normal distribution
Var(1(1))/
Sample size I(1) Var(I(1)) Varu(I(1)) Varm(I(1))
10 0.0176 0.012629 8.45E-05 149.4856
20 0.018645 0.003195 3.90E-05 81.91792
50 0.019365 0.000525 1.51E-05 34.79963
100 0.019477 0.000135 8.37E-06 16.10118
500 0.019639 6.71E-06 1.74E-06 3.846431
1000 0.019566 2.07E-06 7.91E-07 2.610638
2000 0.019636 7.25E-07 4.51E-07 1.606414
5000 0.019608 2.13E-07 1.71E-07 1.245437
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Table 3.4
Simulation Results Comparing Asymptotically Normal
Variance to True (Simulated) Variance

Atkinson’s Measure: A(1)

Normal distribution
Var(A(1))/
Sample size A1) Var(A(1)) Var.(A(1)) Var,.(A(1))
10 0.019574 0.000493 0.000123 4018762
20 0.020094 0.000145 5.62E-05 2.582206
50 0.020675 3.68E-05 2.32E-05 1.584168
100 0.021026 1.53E-05 1.19E-05 1.278816
500 0.021261 2.61E-06 2.50E-06 1.045599
1000 0.021128 1.23E-06 1.12E-06 1.09471
2000 0.021161 6.09E-07 5.89E-07 1.033639
5000 0.021174 2.41E-07 2.19E-07 1.10308
Log-normal distribution
Var(A(1))/
Sample size A(1) Var(A(1)) Varm(A(1)) Varm(A(1))
10 0.017491 0.000431 7.92E-05 5.448522
20 0.018492 0.000128 3.67E-05 3.4974
50 0.019191 2.97E-05 1.39E-05 2.134069
100 0.019301 1.12E-05 7.77E-06 1.445415
500 0.01944 1.65E-06 1.59E-06 1.037366
1000 0.019378 7.81E-07 7.36E-07 1.06146
2000 0.019441] 3.86E-07 4.14E-07 0.933558
5000 0.019417 1.51E-07 1.59E-07 0.953736
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Table 3.5
Simulation Results Comparing Asymptotically Normal
Variance to True (Simulated) Variance

Atkinson’s Measure: A(2)

Normal distribution
Var(A(2))/
Sample size A(2) Var(A(2)) Varm(A(2)) Var,.(AQ2))
10 0.040496 0.000812 0.000679 1.194787
20 0.041493 0.000323 0.000289 1.119406
50 0.04287 0.000124 0.000123 1.013632
100 0.043726 6.43E-05 6.41E-05 1.003015
500 0.044442 1.99E-05 2.15E-05 0.926103
1000 0.044083 8.86E-06 8.63E-06 1.02662
2000 0.044162 3.92E-06 3.84E-06 1.021862
5000 0.044191 1.65E-06 1.48E-06 1.115514
Log-normal distribution
Var(A(2))/
Sample size AQ2) Var(A(2)) Var.m(A(2)) Var (A2
10 0.034619 0.000559 0.000297 1.884942
20 0.03662 0.000216 0.000141 1.52681
50 0.038004 6.83E-05 5.26E-05 1.300129
100 0.038247 3.19E-05 2.96E-05 1.076452
500 0.038485 5.82E-06 5.99E-06 0.97228
1000 0.038383 2.86E-06 2.81E-06 1.0161
2000 0.038497 1.44E-06 1.55E-06 0.925087
5000 0.038454 5.70E-07 6.05E-07 0.942828
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3.3 Small-sample bias in inequality measures:
Coefficient of Variation

3.3.1 Imtroduction

The sample coefficient of variation (cv) is extensively used in applied sciences for
various reasons. In economics, cv has been considered to compare income inequal-
ity across regions or groups, see Sen (1992) and Ravallion (1994). Recently Beach.
Davidson, and Slotsve (1994) have used cv to develop a test for third-order stochas-
tic dominance. (Although their test normalizes income in a way that can lead to
contradictory dominance results.)

Despite the widespread use of the cv, not much is known about its sampling
properties, especially under non-normality. Sampling of ¢t under normality has been
well-analyed going back to McKay (1932). Warren (1982) provides an approximation
of the sampling distribution of cv under normality and surveys the literature on the
coefficient of variation under normality. More recently, Gupta and Ma (1996) analyze
cv in k-variate normal populations. Notable exceptions where the properties of & have
been studied under non-normality include Singh (1973) who used simulation methods
to study the sample ¢v under a variety of distributions, Bowman and Shenton (1981),
who have considered the mean and variance of cv under Weibull distribution and
Neuts (1982), who has considered bounds on cv under mixtures of distributions.

The modest aim of this section is to study the approximate bias and mean squared

error (MSE) properties of (cv)? for the general case, that is without imposing any re-
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strictions on the form of the distribution of the economic variable under consideration.
I have chosen to cobsider the coefficient of variation because it allows for a relatively
simple derivation of its small-sample properties and provides a clear-exposition of the
large-n approximation. Although it is not attempted here, the method can be applied
to other, more frequently used. inequality measures as well'? .

The properties of (cv)?, instead of cv. have been considered because comparing
(cv)? across regions or groups is similar to comparing cv and also because of the
simplicity in deriving the results; the derivation of sampling properties of cv requires
expanding both the numerator and denominator whereas (cv)?® requires the expansion
of the denominator only.

The approximate bias and MSE considered in this paper are derived from the
large—n asymptotic expansion which is straightforward to obtain and provides simple
expressions. Note that the exact results will be extremely difficult to obtain without
imposing some specification of the distribution. The results show that the sample cv
is biased- that is it under/over-estimates the true cv-and a neat analytical condition
under which the bias will be positive or negative is provided. Such an analytical
condition, as far as the author is aware, is not available in the literature and it
indicates that the sample cv will generally be an underestimate of the true cv for

positively-skewed distributions. Since income distributions are generally positively-

12Maasoumi and Theil (1979) consider effect of skewness and kurtosis on the population value of
Theil's measures of inequality. However. they do not consider the moments of the sample estimates
of these inequality measures.
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skewed, the author feels that income inequality estimates based on v are under-
reported, especially for small samples. Since income inequality estimates have policy
implications, I propose a bias-adjusted estimator of cv which is almost—unbiased up
to the order of approximation considered. The plan of this portion of the paper is
as follows. In the next section, I present the main results. The results presented in
section 3.3.2 are derived in the Appendix A. In section 3.3.3, an application of the

result to Chinese and Kenyan data are considered.

3.3.2 Main Results

Let us consider the population mean model as
vi=pu+u , t=1..,n (127)

where y; is the i-th observation on the study variable. 1 and o2 are the unknown
population mean and variance, respectively, and w; is an unobserved error variable.
We assume that the elements u; are independently and identically distributed such

that, for i=1,... ,n,

Eu; = 0, Euf = 0'2, Eu? = 710'3 Euf = (‘72 + 3)0'4 (128)

Bu} = (v +10m)0® Euf = (v + 1042 + 15v; + 15)5°

where v, and <, are Pearson’s measure of skewness and kurtosis of the distribution.

Likewise the quantities 3 and 44 can also be regarded as measures of deviation
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from pormality. See Kendall and Stuart (1977, p. 72) for expression of (128) in
terms of cumulants. For normal distribution. 4, v,, 3. and v are zero while for a
symmetric, non-normal distribution only «; and 45 are zero. Thus non-zero values of
7 to <4 indicate a departure from normality. We also assume that u # 0.

The square of the population coefficient of variation is given by

(=]

(o8
0=~ (129)

Further, the square of the sample coefficient of variation is expressed as

(]

(130)

‘dllcn
(3]

where 7 and s® are the sample mean and variance. respectively, and these are

written as

_ 1 & 1 & _
y= ;Z Yi , 8°= > wi—-9)? (131)
=1

n—1¢e

In what follows, using (131) and (130), I present large-n approximations for the
bias and the mean squared error (MSE) of 6. I also note that exact analytical results
under non-normal distributions are difficult to obtain, and even if one is able to obtain
them, they will depend on the specific distribution of u. The results here are for any

non-normal distribution having finite moments of at least six.
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Proposition 3.1: _If the errors follow (128), the bias of §, upto O(n!), and the MSE of

8. upto O(n~2), are respectively given as:

R /2
Bias(f) = 937 (3672 — 2] (132)

and

2

MSE (§) = [72+49—4719'/2+2 n } (133)

n—1
n n+1 n
20+% [ —— 2
n—l+ Om (n——l)+d0n—l)

n
92

=102 (1 + dm325) + T56% — 1086°/ 2,
The results are derived in the Appendix A. I observe that the approximate results
in the above proposition are for normal (v; = 4, = 0) as well as for non-normal errors.
From (132) it is clear that up to the order of approximation considered. Bias (8) is
positive for negatively-skewed distributions (v, < 0), and it is negative for positively-

skewed (+; > 0) distributions provided

7> 3 () (134)

where cv = #'/2. That is § provides an over-estimation of 8 for negatively- skewed dis-
tribution, and an underestimation for positively-skewed distributions provided (134)
holds. When v, = %c*v, the bias in @ vanishes. Since income distributions are usually
positively skewed, the use of § to measure income inequality will underestimate the
extent of income equality. Furthermore, since this property of 8 will also hold true for
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cv, use of the coefficient of variation will lead to underestimation of income inequality
for positively-skewed income distributions.

For example, when u is lognormally distributed, v, = (e“2 — 1)"/?(¢”2 + 2) and
cv = (e”® — 1)'/2, Kendall and Stuart (1977, p. 181). Thus (134) is satisfied and
hence @ will underestimate 6. Similarly for the exponential distribution v; = 2 and
cv =1 and hence v; > § (cv).

Since the estimates § may be used in policy evaluations/ prescriptions it is useful

to develop a bias-corrected estimator. This is given by

§ = 6 — Bias(d) (135)

-~

where B:Es( ) is the Bias (4) in (132) with 8 replaced by 6 and v; replaced by

l n
== -9°/s" (136)

The estimator § is an almost unbiased estimator of 8 in the sense that bias of & is
zero upto O(n71).

Proposition 3.2: If the errors follow (128), the bias of 4, upto O(n~3), is zero.
That is

Bias (§) =0 (137)

The proof of Proposition 3.2 follows by first noting that, under (128), " = 8" +
O,(1//n) for a constant » > 0, and % = v + O,(1/\/n). Substituting these in
Bias () gives Bias (§) = Bias(9) + O (1/n?), and hence from (2.9) Bias () =
O (1/n?) which proves the result in Proposition 3.2.
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Proposition 3.3: If the errors follow (128), the mean squared error of 4,

upto O(n~2), is

92
n

MSE () =

[ m——]

o446 — 470V 4 2L]
n—1

nies

e 3 1
+— {89§'72 <1+—n) — 8y + byyp — 19247 (2—5 ke )
n—1 n—1

i (5+ =) +488%y, — 1080, + 863, — 1263+,

e 2.
+9a( 0"’1 — 120% + 9(66 — J‘”l) —4892}

n — n —

The proof is given in Appendix A.

When the distribution is normal (v, = vy = 95 = 0),

wiv

94
‘Ml) +489§]|

-~

P
MSE (§) - MSE@) = - [12 + 6% (9 +

n —
which is clearly negative. As discussed above. the bias problem is most severe for
skewed distributions, however, even in the case of normality there will be bias and

the suggested adjusted estimator will reduce bias and is shown to have a lower mean

squared error. For non-normal distributions, it will not in general be possible to show

-~

that MSE (5) ~ MSE(Q) is negative. It will in fact depend upon the shape of the

distribution.
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Finally, I note from Propositions 1, 2, and 3 that for large samples (n — ).

Bias § — 0 and Bias § — 0 and

limit

n
— OC

limit

V() =
II,—’OCn() n

V(f) = 62 [72 +46 — 478'* + 2 (138)

which is the asymptotic variance of  and §. A consistent estimator of the asymptotic
variance can be written by substituting 8. %1 and 42 for ., 4; and ~,. respectively. in

(2.12), where 45, is given by: 43 = (R — 1)"'Y% (il%ﬁ) -3

3.3.3 Empirical application: Kenya and China

For application of the above results I consider two data sets on income: one from
Kenya (1986, Central Bureau of Statistics and the Ministry of National Planning and
Development of Kenya) on 2,424 urban households and 1988 Chinese data on 9.009
urban households gathered by a group of six UC-Riverside faculty members along
with the Chinese Academy of Social Sciences. For additional information on these
data sets see Githinji(1996) and Khan, et. al. (1991).

Table 3.6 gives summary statistics for household and per-capita income as well
as the estimates of § and 4. Per-capita income is computed by equally dividing
household income among all members of the household and thus almost certainly
adds a downward bias to inequality. Household income uses the household as the

main unit of analysis, weighting total household income by household size.
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Table 3.6

Results on Inequality Measures

Unit of income

Exchange rate in $US (at survey date)

Kenyan Shillings
16.04 KS=1.00 US$

Chinese Yuan
4.86 CY=1.00 USS

Survey date 1986 1988
Sample Size 2.424 9,009
HOUSHOLD INCOME KENYA CHINA
Sample statistics
Mean 46,628.95 6,507.26
Median 16,813 5759.00
Average Household Size 3.55 3.53
Variance 25,022.439,640.12 10,873,357
Standard Deviation 158,184.83 3297.48
Skewness coefficient 20.74 2.83
Ccv 3.39 0.50674
CV squared 11.51 0.25678
Corrected CV 3.47 0.5068
Corrected CV squared 12.01 0.25684
Gini coefficient 0.645 0.238
PER-CAPITA INCOME KENYA CHINA
Sample statistics
Mean 12,204.6 1,841.95
Median 7.451.61 1,700.00
Variance 2,403,269,188.45 842,322.83
Standard Deviation 49,023.15 917.78
Skewness coefficient 27.45 3.04
Ccv 4.02 0.498
CV squared 16.13 0.248
Corrected CV 416 0.498
Corrected CV squared 17.28 0.248
Gini coefficient 0.652 0.222
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It is clear from this table and the nonparametric kernel density estimates (Silver-
man (1986)) that urban inequality is much larger in Kenya than in China. Comparing
the almost-unbiased cv-squared 6 with the sample cv-squared as it is usually calcu-
lated, 6. the two data sets give quite different results. For the China data. the bias
correction gives almost no change in cv-squared. In the Kenya data. however. he
usual cv-squared estimator, §, gives an underestimate of inequality. This is because
for the Kenya data the inequality v; > %c v in (2.8) is satisfied. The lack of difference
between 6 the § in the China data may be due to two reasons. First. the China data
set is almost four times larger than the Kenya one so that the Bias () in (132) is
almost zero- that is # and hence 8 are both asymptotically unbiased. The second
reason is that the China data has a less—skewed distribution— that is the value of 4;
is small and close to % cv making the bias of  in (132) near zero.

The above findings indicate that when the sample is small or moderately large.
or the skewness in the distribution is either negative or when it is >% cv the almost
unbiased estimator § will be useful for correcting bias in 6. Although it is beyond the
scope of this paper, similar results could be developed for other inequality measures,

see Maasoumi (1991), Sen (1992) and Ravallion (1994).
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3.3.4 Simulation

Now I turn to the question of how important the bias in the coefficient of variation is
for small samples. I attempt to answer this question through two simulation exercises.
First, using the Kenya data as our “population’. I drew a random sample (with
replacement) of size 100, and calculated both the sample coefficient of variation and
the “almost unbiased” CV for this new sample. I then repeated this exercise 1000
times. For the per-capita incomes, on average, the almost-unbiased estimator of CV
gave an increase of 17% over the uncorrected cv (calculated in the usual way as the
sample standard deviation divided by the sample mean). In several cases. the bias
correction changed the uncorrected cv by over 100%. (The maximum increase from
6 to 6 was 112%.) Thus, in small sample, CV (uncorrected) may understate the true
coefficient of variation by more than half.

When we increase the sample size, the average change from 8 to the almost-
unbiased estimator becomes smaller, as expected. At a sample size of 200, the average
change is 15.8%. At a sample size of 500, the average change is 11%. In the simulation
with sample sizes of 200, the maximum change from 6 to § was 70%; in that with
sample size 500, 34%.

In the second simulation exercise, I compare the empirical bias and mean-squared
error of ¢ = ‘/7’_2 with ¢cv = \/5 (see equation (135)) and a leave-one out jackknife

estimator, cvj, calculated in the usual way. (Efron (1982, p. 6)) Again, using the
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Kenya sample as my population, I consider seven different sample sizes ranging from
n=50 to n=500. Drawing a sample of size n with replacement, I calculate &. cv. and
CUjkn. This exercise is repeated 5000 times for each sample size considered. Results
are summarized in Table 3.7 and Figures 3.1 and 3.2.

The jackknife estimator has the lowest average bias and the highest mean squared
error throughout. as can be seen from Table 3.7 and Figure 3.2. The high variability
of the estimator is a well-known problem of the jackknife (see Hinkley (1978). for
example). Considering the bias, which is presented in the first part of Table 3.7 and
in Figure 3.1, the proposed adjusted cv (¢év) dominates cv as it is usually calculated
(cv) for all sample sizes which were considered. However, at medium and large sample
sizes, the adjusted cv has a slightly higher mean squared error than cv. However, com-
pared to the jackknife, the difference is very small (see Figure 3.2). Non-parametric
density estimates of the 5000 repetitions for the three different estimators are pro-
vided in Figure 3.3 for the case of n=200. The non-parametric densities for the other

sample sizes were similar.

101

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.com



6’ $60'C 106°1 $60°0- 6£0- 19°0- 00¢
65S'¢ €8T 987'C 0T 0- $S°0- 9L°0- 00v
8LSY 0L6't 89L°T 670" Lo $60- 00¢
6L8'S [4'193 Lte'e 8v'0- L6°0- 61'1- 007
L9v'9 970t Svo'v 89°0- - vt- 0sl
IL89 009t 08t 00'I- 191- SL'1- 001
LES9 8V8'¢ 0919 i- (A €T 0s

40 42 49 10 42 49 u

Joug pazenbg uespy aBerany seig oFeloAy

UOHELIBA JO JUIYI0)) A JO S10)BWIDST Y |, 10§

suonnedal 0QQg U paseq uoneWIS

Joaxy pasenbg uwapy pue seig I8uaAy

L'edqe],

102

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanw.manaraa.com



82| a|dursg orAd

J|DPIOBF — — —
AD persnipy——— ™
AD------ 3

UofieuBA JO JUBIDHJR0D 3y} JO SIojew)iST 8aJy | Joj selg
L' anBig

. L$ I
i
) er. Further reproduction prohibited without permissionyaw\w.manaraa.com




az|s ajdumg
00s (00,4 00e (0,64 0s1

' ) 1} 1] s

eJuopioer — — — \
A2 peIsnlpy—— N

UOleU.A JO JUBID1J80D) BU) JO SIOJBWINST 381y ] Joj Jou] pasenbg Uealy
Z'e ainb4

0ot

s

104

o}
©
©
©
S
©
c
£
c
Q
(9]
2
S
f—
<8}
o
-
>
o
<
=
s
°
Q
=
ie)
<
(@]
f—
o
c
S
=
(8]
>
©
o
o
(o
()
S
f—
(8}
°
=
>
LL
—
[}




o
.. = > 1
e S o
g'_'j 3%
© 523
c C - <4 o
O ® -
p >
O o X
> 0
E L
25 | E
5 o
Yo
>
™ 3T I &
m p O
o O o]
(DE @
C =S o [~ Jmp
J L ©
R ; E
(T y_ [ ﬁ
+>)~.O e w
am ,/
¢ N
%8 1@
O
o E :
C P
D0
O L
TR |
(—a)
T <
o s
CP—
@)
2
B 4o
] | . ! H ! n . D
Sv'0 OV'0 SE'0 0OE0 G20 020 SI'0 OL'0 SO0 0O
Aqlsus(g
105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



3.3.5 Conclusion

cv is shown to reduce bias compared to . with only a small loss of mean squared
error. In cases where bias is the main concern of the practitioner, ¢v is thus preferable.
Although the jackknife gives lower bias, the extremely high mean squared error would
indicate that one should be suspicious of the results for any given case. cv thus
provides a bias reduction that does not come at the expense of a large increase in
variance.

Now let us turn to issues of the sampling structure in estimating inequality mea-
sures. Like the mean case, we will have to adjust our standard errors in the case of
sampling without replacement and clustering. When we have stratified data. weight-

ing will be required to have unbiased estimators.
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3.4 Random Sampling without replacement

When the sampling is without replacement, our estimators from (87) through (92)
will remain consistent, though biased in small samples as discussed above. However.
inference will be affected when the sampling is without replacement from a finite
population.

We saw in section 2 that when the sampling is without replacement (RSWOR) that
the variance of the mean, 7 needs to be adjusted by the finite population correction

term to adjust for the correlation which is induced by sampling without replacement

=2 (325)

How will the standard errors which we calculated for inequality measures need to be
adjusted for the case of sampling without replacement from a finite population”
Consider the example of the coefficient of variation. For moderately large samples.

we can use the approximation to the variance of (96)

2
Varf) = Verw) (F8) +200u(a(0)7) 20D &)
+Var(g) (éfé;%) +O(#)' o)

where Var(7) is now (139), and we can solve for the Var(g(y)) and the Cov(3(y),7)

by the same method that was used in section 3.2.
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For RSWOR,

- 1
Var(3) = ~ {(73 +3) ot + 4l0? + duosy, — a"} (141)
1(n-1 1(n—-1 —1
+¥#20’12 + %#0’1 1z + (n )0’1122
and the Cov(f3;,7) under RSWOR will be
- 1
Cov(B3,9) = ~{o°n +2u0’ (142)

+2(n — 1)puoz + (n ~ 1)oyy2}

where 03, 0113, and o122 are as given in (11). These two results are proven in
Appendix B.

Simplifying and rearranging gives

Var(3;) = "1; {(‘Yz +3) ot + 4ulo? + fucy, — o"} (i:/; : rlr) (143)
= Vargswr(f) (]]:/; — rll)
and
Cov(n7) = 1+ [o*n +2u0%) (—3) (144)

1)

= CO'URSWR(BM 7) (N 1

where Varme([i;) and are CovRSWR(B,,y) the values for the variance and covari-

ance under random sampling with replacement from (102) and (103).
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For the case of the cvefficient of variation, then, we can simply calculate the
variance of CV under RSWR and correct by the finite population correction, which
will be the same as the finite population correction (fpc) from the mean case which

we saw in section 2. That gives., upto O(1)

oy 1 o? o2 4 N -
Vargswor(CV) = ~ {(‘Yz +2) Ez‘ ~ uzl + /%} (N _?) (145)

N—n)
N-1

= Vargswr(CV) (

Similar methods can be used to calculate the finite population correction (fpc) for
the other inequality measures. We note here that it may not be the case that the fpc

is the same as that for the mean case for the other measures.

3.5 Stratification: Inequality estimation and inference

Many of the samples which economists use are gathered through some type of strat-

ification scheme. The population mean model will thus be
}/hi=/-‘h+Uhi, h= 1,....H, 1= 1,...,Nh (146)

where Y; is the ¢-t4 unit in the h-th stratum, u, is the mean of the h-th stratum and

Ui is the error.

The stratified sample observations, generated by RSWOR in each stratum, follow

Yni = Mp + Un;, h=1, -y H, t=1,...,np (147)
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As we saw in section 2, an unbiased estimate of the mean can be written as a
weighted sum of the stratum-specific means. For all widely-used inequality measures.
this will no longer be the case. 3° %’,hfh will underestimate the population inequality
since it takes into account only the within-stratum inequality and not the between-
stratum inequality.

If the stratified sample is chosen such that the proportion of elements sampled
is equal in all strata, then the sample is self-weighting and we can estimate inequal-
ity following (87) through (92). If not. we need to develop some type of weighted
estimator in order to have consistent estimation of inequality.

One approach in this case is to apply the literature on decomposable inequality
measures. Bourguignon (1979), Shorrocks (1980) and Cowell (1989) give expressions
for calculating the inequality measures in (87) through (92) as combinations of within-
group and between-group inequality. For example, the estimate of Theil’s measure.

I, becomes

1 yhi Yni

o log =2 148
- anf Z yhlogyh

R Y ny

when the sampling is proportional. As we can see, this is merely the sum of within-
group inequality indices, fl‘,,, and another term which provides a measure of between

group inequality.
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This will be biased whenever the sampling probabilities are unequal between
subgroups (strata), analogous to the mean case. It is straightforward to generalize
this method to the non-proportional sampling case by writing a weighted version of

this estimator

N =ZZ Whi 1_”“ log @ (149)
h na Yw Yw
Making the weights
N,
Whi = Wp, = Nr';,, (150)
will yield
= = Nnl - Nn Yy Un
I —; Ny, Lin+ V’L; N 7. log - (151)

The weights in the proportional case are wy; = wy, = 1.

s

Showing that Theil’s estimator can be decomposed this way in the non-proportional
sampling case can be done by following Shorrocks (1980). It should be intuitively clear
however, that just as in the mean case, our subgroup measures need to be weighted
by population proportions, %‘l, instead of by sampling proportions, A,

Cowell (1989) provides standard errors for inequality measures calculated from
subgroup data. Standard errors and confidence intervals which take into account the
non-proportional sampling can be formed by following the approach in that paper,

keeping the above discussion in mind.
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In practice, two problems immediately present themselves. The first is that there
may be a very large number of strata and only a few elements sampled in each strata.
(Pudney (1989) for example cites a sample from the U.K. with several thousand strata
and many strata with only one or two households sampled.) Confidence intervals
composed following the method above and Cowell (1989) will be based upon within-
strata variances. Calculating these sub-group (stratum-specific) variances on the basis
of only two or three observations will give odd results indeed! The second problem
for the practitioner is that quite frequently we are given data which has been drawn
in a stratified or multi-stratified sample and are given weights to inflate to population
totals, but we are not given information on which element of the sample belongs to
which stratum. We will thus be unable to implement the above methodology.

Instead of treating each stratum as a subgroup, therefore, we need to find a way to
consider a pooled estimate of the data which takes into account the non-proportional

sampling. We can generalize our sample estimator of inequality (94) by writing

fw(y) = F(ﬁw(y)sgw)' (152)

Y, Will be as in (46) and G, (y) =i w;g(y;). The weights in the case of equal
i=1
probability sampling are

wi= > (153)
i

and are identical for all elements in the sample. As pointed out above, however, equal
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probability sampling will be the exception in the household income and expenditure
surveys used for inequality analysis.

For unbiased estimation of those inequality measures which can be written in the
form (152) the weights should be chosen proportional to the inverse of the sampling

probabilities, just as in the mean case

w‘-al‘. (154)

UK
The same line of reasoning holds—elements which enter the sample with higher prob-
ability need to be deflated with a relatively smaller weight than elements entering the
sample with a low probability.
In the case of unequal probability sampling, the Coefficient of Variation (CV),
for example, will be estimated as the ratio of the weighted estimates of the standard

deviation and the mean

e
CV, = % (155)

2

» 1S an unbiased estimator of the variance of 3.

where s

When we are given weighted data with weights smaller than one (which may be
due to the normalization used) we note that s2 = (w, — w,)~' T w;(y; — 7,,)? will be
unbiased for 6 where w, is the total of the weights, and w, is the smallest weight. If
all weights are greater than or equal to one, w, = 1 will give unbiased estimation of

the variance.

We can likewise develop weighted estimators of the other inequality measures
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considered in (88) through (92)

o =73'Y. wyiln(y) — In(,), (156)
i=1
fow =In(F,)= 3 wiln(y): (157)
i=1
n |l
A0 =1-52 (L wat) (158)
i=1
When € = 1 in Atkinson’s measure, the weighted estimator maybe written as
— 3 w; In(3:)
Au(l) = 1—17516‘; (159)
= 1-efow, (160)

These are of course general expressions, since setting w; = & for all observations gives
the simple random sampling result.

To calculate standard errors, we can use the formulas in (107) to (110) and replace
the various moments with their weighted estimators. Thus, an estimate of the variance

of the coefficient of variation, for example, becomes

— 1 2 Sy, st
VW(CV)=;{(72.1JJ+2)?‘?I+§—4} (161)

where 7,, and s2, are given above,

Vw = S;szwi(yi -7,)° (162)
and
Vo =S5 D wi(%i — Fy)* — 3. (163)
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This should provide a slight over-estimation of the variance, since we are ignoring the
fact that the sampling is conducted independently across strata. For a simple model.

we explore how well this approximation will work through a simulation exercise.

3.5.1 Simulation

For the simulation. we construct the following population models for two strata

Yii=u + Uy (164)

Yai = pa + Uy (165)

where p; = 100, z, = 200, af = 20, and 0'§ = 20. This provides a "wealthy” stratum
(stratum 2) and a "poor” stratum (stratum one), as well as more income variation
in the poorer stratum than in the richer one. The coefficient of variation in stratum
1 will be .2 and in stratum 2, it will equal .1. The disturbance terms. U. for the
simulated populations were drawn from normal populations. Each stratum is given
total population of 100,000.

Table 3.8 gives the population values for the five inequality indices which we have
been considering. Note that in all cases, most of the inequality is coming from the
between-group term as opposed to the within-group inequality. This will be typical
of the income distributions in many developing nations where large differences in

average income exist between rural and urban populations.
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Table 3.8
Inequality Measurement under Stratified Sampling:
Population Values for Two Simulated Strata

Stratum 1 Stratum 2 Total
Population 100,000 100,000 200,000
Cv 2 1 .359
T(0) .0216 .0051 .0722
T(1) .0207 .0050 .0668
A(1) .0214 .0050 .0697
A(2) .0446 .0102 .1408

Both strata generated from a normal distribution
6+1=20 and 6>=20
1+=100 and p,=200
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We would like to consider the effects of non-proportional sampling from the two
strata on our estimates of inequality measures. We will draw unequal sized samples
from the two strata and consider the weighted and unweighted estimates of inequality.
The samples in the simulation are drawn with replacement, thus we will not have
to consider any effects of the finite population when we examine inference under
stratification below.

Using the weighted measures of (155) through (160) gives unbiased estimation of
inequality in the stratified case as can be seen from Tables 3.9 through 3.13. In the
first panel of each table, we present the results for non-proportional sampling when
stratum 2 is sampled twice as intensively as stratum 1 (recall that the two strata are
the same size.) In the second and third panels of each table, we provide the results
when we increase the disproportion in the sampling. The second panel provides the
results from the case when three times as many elements are drawn from stratum 2
as from stratum 1 and the third panel looks at a four to one ratio of sampling. In all
cases, we are over-sampling the stratum with lower inequality and as we see, when we
do not weight the data, we have persistent negative bias in the estimate of inequality.
This result holds true for all five indices considered.

We would also like to examine the weighted approximations of the variance by
using the asymptotically normal variances provided in section 3.2.2 and their weighted

analogs as suggested above. These results are given in Tables 3.14a through 3.18b for
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the five inequality measures.

The first result, which is quite surprising, is that these weighted approximations
will tend to under-estimate the true variance of the inequality measure. This is
surprising, since in the mean case such weighted estimation will generally lead to
slight over-estimation of the variance since such a calculation does not take into
account the independence of the samples in different strata. The simulation shows
that in the inequality case, this problem of underestimation of the variances increases
as the dis-proportionality of sampling grows. When stratum 2 is sampled twice as
intensively as stratum 1, the weighted variance approximation for CV and I(1) give
slight overestimation of the true (simulated variance). Column seven in Tables 3.14a
and 3.14b show this. The approximation for the variances of 1(0) and A(1) both give a
20% underestimate, as we can see from column seven of Tables 3.15a. 3.15b. 3.17a and
3.17b. This shouldn’t be surprising given the relationship between these two measures
shown above. From Tables 3.18a and 3.18b, we can see that the variance estimate for
A(2) does the worst of the five inequality measures considered. underestimating the
simulated variance by almost 30%.

When the sampling disproportion grows to a 4 to 1 ratio, all of the inequality
measures have variance approximations which underestimate the true variance. These
range from an underestimation of about 10% in the case of the coefficient of variation
to 50% underestimation in the case of Atkinson’s measure with € = 2.

For all of the inequality measures considered, as sample sizes grow, the estimated
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variances do decrease as expected. The estimated variance of I(1) does quite poorly
for very small sample sizes, as seen above in the simulation of section 3.2.3.

Recall that the purpose of considering this method of estimating the variance of
inequality measures was to deal with the problem of insufficient information about the
sample. When full information about the sampling is available. it is certainly more
effective to consider each stratum separately and use the results of Cowell (1991).
However, what is shown here is that even when we only have information about
weights and no information about which element in the sample belongs to which
stratum, we can estimate inequality measures unbiasedly and estimate their variances
fairly adequately.

The simulation shows that weighted variance estimates for inequality measures
should be taken with some caution. When samples are highly non-proportional,
these estimates do not perform very well. They may still be taken as lower bounds on
the variance, however, as there appears to be a general pattern of under-estimation
of variance using weighted approximations.

In section 3.5.2 below, we will apply these results to a stratified data set from

Kenya to observe the effects of ignoring the stratification in calculating inequality.
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Table 3.9
Inequality Measurement under Stratified Sampling:
Simulation Results for the Coefficient of Variation

Sample Sizes Unweighted estimate Weighted estimate
Stratum 1 Stratum 2 Total Ccv Bias CV Bias
5 10 15 0.3165 -0.0425 0.3673 0.0083
10 20 30 0.3103 -0.0487 0.3614 0.0024
20 40 60 0.3093 -0.0497 0.3608 0.0018
50 100 150 0.3084 -0.0506 0.3602 0.0012
100 200 300 0.3075 -0.0515 0.3591 0.0001
200 400 600 0.3074 -0.0516 0.3592 0.0002
500 1000 1500 0.3074 -0.0516 0.3592 0.0002
1000 - 2000 3000 0.3073 -0.0517 0.3591 0.0001
2000 4000 6000 0.3072 -0.0518 0.3589 -0.0001
3000 6000 9000 0.3073 -0.0517 0.3591 0.0001
5000 10000 15000 0.3072 -0.0518 0.3590 0.0000
Sample Sizes Unweighted estimate Weighted estimate
Stratum 1  Stratum 2 Total Cv Bias CcvV Bias
5 15 20 0.2780 -0.0810 0.3637 0.0047
10 30 40 0.2745 -0.0845 0.3602 0.0012
20 60 80 0.2736 -0.0854 0.3599 0.0009
50 150 200 0.2729 -0.0861 0.3593 0.0003
100 300 400 0.2725 -0.0865 0.3587 -0.0003
200 600 800 0.2726 -0.0864 0.3591 0.0001
500 1500 2000 0.2727 -0.0863 0.3593 0.0003
1000 3000 4000 0.2725 -0.0865 0.3590 0.0000
2000 6000 8000 0.2726 -0.0864 0.3592 0.0002
3000 9000 12000 0.2725 -0.0865 0.3590 0.0000
5000 15000 20000 0.2725 -0.0865 0.3590 0.0000
Sample Sizes Unweighted estimate Weighted estimate
Stratum 1  Stratum 2 Total Cv Bias CV Bias
5 20 25 0.2525 -0.1065 0.3624 0.0034
10 40 50 0.2495 -0.1095 0.3593 0.0003
20 80 100 0.2492 -0.1098 0.3596 0.0006
50 200 250 0.2489 -0.1101 0.3596 0.0006
100 400 500 0.2484 -0.1106 0.3588 -0.0002
200 800 1000 0.2485 -0.1105 0.3592 0.0002
500 2000 2500 0.2485 -0.1105 0.3592 0.0002
1000 4000 5000 0.2485 -0.1105 0.3591 0.0001
2000 8000 10000 0.2484 -0.1106 0.3590 0.0000
3000 12000 15000 0.2484 -0.1106 0.3590 0.0000
5000 20000 25000 0.2484 -0.1106 0.3590 0.0000
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Table 3.10
Inequality Measurement under Stratified Sampling:
Simulation Results for Theil's Inequality Measure I(0)

Sample Sizes Unweighted estimate Weighted estimate
Stratum 1  Stratum 2 Total I(0) Bias 1(0) Bias
5 10 15 0.0594 -0.0128 0.0723 0.0001
10 20 30 0.0588 -0.0134 0.0716 -0.0006
20 40 60 0.0592 -0.0130 0.0721 -0.0001
50 100 150 0.0594 -0.0128 0.0723 0.0001
100 200 300 0.0592 -0.0130 0.0720 -0.0002
200 400 600 0.0592 -0.0130 0.0721 -0.0001
500 1000 1500 0.0593 -0.0129 0.0723 0.0001
1000 2000 3000 0.0593 -0.0129 0.0722 0.0000
2000 4000 6000 0.0593 -0.0129 0.0722 0.0000
3000 6000 9000 0.0593 -0.0129 0.0722 0.0000
5000 10000 15000 0.0593 -0.0129 0.0722 0.0000
Sample Sizes Unweighted estimate Weighted estimate
Stratum 1 Stratum 2 Total 1(0) Bias 1(0) Bias
5 15 20 0.0487 -0.0235 0.0717 -0.0005
10 30 40 0.0486 -0.0236 0.0715 -0.0007
20 60 80 0.0489 -0.0233 0.0721 -0.0001
50 150 200 0.0489 -0.0233 0.0721 -0.0001
100 300 400 0.0488 -0.0234 0.0719 -0.0003
200 600 800 0.0489 -0.0233 0.0722 0.0000
500 1500 2000 0.0490 -0.0232 0.0723 0.0001
1000 3000 4000 0.0489 -0.0233 0.0722 0.0000
2000 6000 8000 0.0490 -0.0232 0.0723 0.0001
3000 9000 12000 0.0489 -0.0233 0.0722 0.0000
5000 15000 20000 0.0489 -0.0233 0.0722 0.0000
Sample Sizes Unweighted estimate Weighted estimate
Stratum 1  Stratum 2 Total 1(0) Bias I(0) Bias
5 20 25 0.0416 -0.0306 0.0718 -0.0004
10 40 50 0.0412 -0.0310 0.0713 -0.0009
20 80 100 0.0416 -0.0306 0.0721 -0.0001
50 200 250 0.0417 -0.0305 0.0724 0.0002
100 400 500 0.0415 -0.0307 0.0720 -0.0002
200 800 1000 0.0417 -0.0305 0.0723 0.0001
500 2000 2500 0.0417 -0.0305 0.0723 0.0001
1000 4000 5000 0.0417 -0.0305 0.0723 0.0001
2000 8000 10000 0.0416 -0.0306 0.0722 0.0000
3000 12000 15000 0.0416 -0.0306 0.0722 0.0000
5000 20000 25000 0.0416 -0.0306 0.0722 0.0000
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Table 3.11
Inequality Measurement under Stratified Sampling:
Simulation Results for Theil's Inequality Measure I(1)

Sample Sizes Unweighted estimate Weighted estimate
Stratum 1 Stratum 2 Total I(1) Bias I(1) Bias
5 10 15 0.0519 -0.0149 0.0672 0.0004
10 20 30 0.0514 -0.0154 0.0664 -0.0004
20 40 60 0.0518 -0.0150 0.0668 0.0000
50 100 150 0.0519 -0.0149 0.0670 0.0002
100 200 300 0.0517 -0.0151 0.0667 -0.0001
200 400 600 0.0518 -0.0150 0.0668 0.0000
500 1000 1500 0.0518 -0.0150 0.0669 0.0001
1000 2000 3000 0.0518 -0.0150 0.0668 0.0000
2000 4000 6000 0.0518 -0.0150 0.0668 0.0000
3000 6000 9000 0.0518 -0.0150 0.0668 0.0000
5000 10000 15000 0.0518 -0.0150 0.0668 0.0000
Sample Sizes Unweighted estimate Weighted estimate
Stratum 1  Stratum 2 Total I(1) Bias K1) Bias
5 15 20 0.0416 -0.0252 0.0668 0.0000
10 30 40 0.0415 -0.0253 0.0664 -0.0004
20 60 80 0.0417 -0.0251 0.0668 0.0000
50 150 200 0.0417 -0.0251 0.0668 0.0000
100 300 400 0.0416 -0.0252 0.0666 -0.0002
200 600 800 0.0417 -0.0251 0.0668 0.0000
500 1500 2000 0.0418 -0.0250 0.0669 0.0001
1000 3000 4000 0.0417 -0.0251 0.0668 0.0000
2000 6000 8000 0.0418 -0.0250 0.0669 0.0001
3000 9000 12000 0.0417 -0.0251 0.0668 0.0000
5000 15000 20000 0.0417 -0.0251 0.0668 0.0000
Sample Sizes Unweighted estimate Weighted estimate
Stratum 1  Stratum 2 Total I(1) Bias I(1) Bias
5 20 25 0.0351 -0.0317 0.0669 0.0001
10 40 50 0.0348 -0.0320 0.0663 -0.0005
20 80 100 0.0350 -0.0318 0.0668 0.0000
50 200 250 0.0351 -0.0317 0.0670 0.0002
100 400 500 0.0350 -0.0318 0.0667 -0.0001
200 800 1000 0.0351 -0.0317 0.0669 0.0001
500 2000 2500 0.0351 -0.0317 0.0669 0.0001
1000 4000 5000 0.0351 -0.0317 0.0669 0.0001
2000 8000 10000 0.0351 -0.0317 0.0668 0.0000
3000 12000 15000 0.0351 -0.0317 0.0668 0.0000
5000 20000 25000 0.0351 -0.0317 0.0668 0.0000
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Table 3.12
Inequality Measurement under Stratified Sampling:
Simulation Results for Atkinson's Inequality Measure A(1)

Sample Sizes Unweighted estimate Weighted estimate
Stratum 1 Stratum 2 Total A(D) Bias A(D) Bias
5 10 15 0.05759 -0.01207 0.06958 -0.00008
10 20 30 0.05702 -0.01264 0.06896 -0.00070
20 40 60 0.05749 -0.01217 0.06954 -0.00012
50 100 150 0.05767 -0.01199 0.06977 0.00011
100 200 300 0.05745 -0.01221 0.06950 -0.00016
200 400 600 0.05752 -0.01214 0.06958 -0.00008
500 1000 1500 0.05760 -0.01206 0.06971 0.00005
1000 2000 3000 0.05756 -0.01210 0.06966 0.00000
2000 4000 6000 0.05753 -0.01213 0.06962 -0.00004
3000 6000 9000 0.05758 -0.01208 0.06969 0.00003
5000 10000 15000 0.05756 -0.01210 0.06966 0.00000
Sample Sizes Unweighted estimate Weighted estimate
Stratum I Stratum 2 Total A(l1) Bias A(1) Bias
S 15 20 0.04750 -0.02216 0.06905 -0.00061
10 30 40 0.04737 -0.02229 0.06896 -0.00070
20 60 80 0.04768 -0.02198 0.06954 -0.00012
50 150 200 0.04771 -0.02195 0.06958 -0.00008
100 300 400 0.04760 -0.02206 0.06940 -0.00026
200 600 800 0.04776 -0.02190 0.06966 0.00000
500 1500 2000 0.04781 -0.02185 0.06974 0.00008
1000 3000 4000 0.04775 -0.02191 6.06964 -0.00002
2000 6000 8000 0.04779 -0.02187 0.06971 0.00005
3000 9000 12000 0.04776 -0.02190 0.06966 0.00000
5000 15000 20000 0.04776 -0.02190 0.06966 0.00000
Sample Sizes Unweighted estimate Weighted estimate
Stratum 1 Stratum 2 Total AQl) Bias A(l) Bias
5 20 25 0.04066 -0.02900 0.06911 -0.00055
10 40 50 0.04037 -0.02929 0.06878 -0.00088
20 80 100 0.04072 -0.02894 0.06954 -0.00012
50 200 250 0.04084 -0.02382 0.06978 0.00012
100 400 500 0.04065 -0.02901 0.06941 -0.00025
200 800 1000 0.04080 -0.02886 0.06973 0.00007
500 2000 2500 0.04080 -0.02886 0.06973 0.00007
1000 4000 5000 0.04080 -0.02886 0.06973 0.00007
2000 8000 10000 0.04078 -0.02888 0.06967 0.00001
3000 12000 15000 0.04077 -0.02889 0.06966 0.00000
5000 20000 25000 0.04078 -0.02888 0.06967 0.00001
123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



Table 3.13
Inequality Measurement under Stratified Sampling:
Simulation Results for Atkinson's Inequality Measure A(2)

Sample Sizes Unweighted estimate Weighted estimate
Stratum 1 Stratum 2 Total AQ2) Bias A(2) Bias
5 10 15 0.12381 -0.01694 0.13861 -0.00214
10 20 30 0.12314 -0.01761 0.13836 -0.00239
20 40 60 0.12447 -0.01628 0.14008 -0.00067
50 100 150 0.12500 -0.01575 0.14076 0.00001
100 200 300 0.12450 -0.01625 0.14025 -0.00050
200 400 600 0.12467 -0.01608 0.14045 -0.00030
500 1000 1500 0.12494 -0.01581 0.14081 0.00006
1000 2000 3000 0.12487 -0.01588 0.14074 -0.00001
2000 4000 6000 0.12480 -0.01595 0.14066 -0.00009
3000 6000 9000 0.12495 -0.01580 0.14084 0.00009
5000 10000 15000 0.12488 -0.01587 0.14075 0.00000
Sample Sizes Unweighted estimate Weighted estimate
Stratum 1 Stratum 2 Total AQ2) Bias AQ2) Bias
5 15 20 0.10632 -0.03443 0.13739 -0.00336
10 30 40 0.10648 -0.03427 0.13828 -0.00247
20 60 80 0.10753 -0.03322 0.14012 -0.00063
50 150 200 0.10766 -0.03309 0.14039 -0.00036
100 300 400 0.10741 -0.03334 0.14011 -0.00064
200 600 800 0.10782 -0.03293 0.14070 -0.00005
500 1500 2000 0.10794 -0.03281 0.14086 0.00011
1000 3000 4000 0.10781 -0.03294 0.14071 -0.00004
2000 6000 8000 0.10792 -0.03283 0.14086 0.00011
3000 9000 12000 0.10784 -0.03291 0.14076 0.00001
5000 15000 20000 0.10783 -0.03292 0.14074 -0.00001
Sample Sizes Unweighted estimate Weighted estimate
Stratum 1 Stratum 2 Total AQ2) Bias A(2) Bias
5 20 25 0.09329 -0.04746 0.13731 -0.00344
10 40 50 0.09290 -0.0478S5 0.13768 -0.00307
20 80 100 0.09413 -0.04662 0.14011 -0.00064
50 200 250 0.09447 -0.04628 0.14081 0.00006
100 400 500 0.09394 -0.04681 0.14002 -0.00073
200 800 1000 0.09444 -0.04631 0.14090 0.00015
500 2000 2500 0.09443 -0.04632 0.14090 0.00015
1000 4000 5000 0.09444 -0.04631 0.14093 0.00018
2000 8000 10000 0.09437 -0.04638 0.14081 0.00006
3000 12000 15000 0.09434 -0.04641 0.14075 0.00000
5000 20000 25000 0.09435 -0.04640 0.14077 0.00002
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Simulation results for the Coefficient of Variation

Table 3.14a
Weighted Approximations of Inequality Index Variances

under Stratified Sampling:

Sample sizes Var(CVvy)/

St.1 St.2 Total CVw Var(CVw)  Varm(CVw) Varm(CVw)

5 10 15 0.367 0.00206776 0.00186568 1.1083155

10 20 30 0.361 0.00105542 0.00089923 1.1736934

20 40 60 0.360 0.00054663 0.00042696 1.2802874

50 100 150 0.360 0.00022018 0.00016361 1.3457268

100 200 300 0.359 0.00011025 8.90E-05 1.2388519

200 400 600 0.359 5.52E-05 4.03E-05 1.3700043

500 1000 1500 0.359 2.22E-05 1.80E-05 1.2335304

1000 2000 3000 0.359 1.11E-05 8.62E-06 1.2892905

2000 4000 6000 0.359 5.56E-06 4.25E-06 1.3073473

3000 6000 9000 0.359 3.71E-06 3.01E-06 1.2334416

5000 10000 15000 0.359 2.22E-06 1.72E-06 1.2944365

Sample sizes Var(CVw)/

St.1 St.2 Total CVw Var(CVw) Var,(CVw) Var(CVw)

5 15 20{ 0.3637 0.00152388 0.0015792 0.9649673

10 30 40| 0.3602 0.00079305 0.0008355 0.9492084

20 60 80f 0.3599 0.00041155 0.0003938 1.0450549

50 150 200/ 0.3593 0.00016552 0.0001736 0.9537090

100 300 400 0.3587 8.26E-05 7.84E-05 1.0540138

200 600 800 0.3591 4. 16E-05 3.93E-05 1.0586132

500 1500 2000{ 0.3592 1.67E-05 1.73E-05 0.9666327

1000 3000 4000, 0.3590 8.33E-06 7.85E-06 1.0613886

2000 6000 8000 0.3591 4 17E-06 4.10E-06 1.0185747

3000 9000 12000{ 0.3590 2.78E-06 2.78E-06 1.0001088

5000 15000 20000 0.3590 1.67E-06 1.68E-06 0.9907968
Two strata
1= 06-=20

r1=100; p>=200

Stratum 2 (the less unequal stratum) is over-sampled
Population CV=.359
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Table 3.14b

Weighted Approximations of Inequality Index Variances
under Stratified Sampling:

Simulation results for the Coefficient of Variation

Sample sizes Var(CVw)/

St.1 St.2 Total CVw Var(CVw) Varg(CVw) Varm(CVw)

5 20 25| 0.3624 0.0012163 0.0017285 0.70367462

10 40 50| 0.3593 0.00062769 0.00081978 0.76567722

20 80 100 0.3596 0.00032855 0.00039165 0.83886726

50 200 250( 0.3596 0.00013316 0.00016796 0.79278659

100 400 500] 0.3587 6.60E-05 8.43E-05 0.78258243

200 800 1000| 0.3592 3.33E-05 4.16E-05 0.80151357

500 2000 2500/ 0.3591 1.34E-05 1.54E-05 0.86584341

1000 4000 5000, 0.3591 6.68E-06 7.52E-06 0.88915843

2000 8000 10000 0.3590 3.34E-06 4.39E-06 0.76094926

3000 12000 15000{ 0.3590 2.22E-06 2.58E-06 0.86148283

5000 20000 25000( 0.3590 1.33E-06 1.49E-06 0.89626966
Two strata
C1= 62=20

11=100; p>=200

Stratum 2 (the less unequal stratum) is over-sampled

Population CV=.359
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Table 3.15a

Weighted Approximations of Inequality Index Variances

under Stratified Sampling:

Simulation results for Theil’s Measure: 1(0)

Sample sizes Var(1. (0))/
St.1 St.2 Total 1.(0) Var(ln (0)) Varm(I. (0)) Vara(Ix (0))
5 10 15| 0.0723 0.00071592 0.00040703 1.758902
10 20 30, 0.0716  0.00024625 0.00019017 1.294863
20 40 60| 0.0721 0.00010026 9.17E-05 1.092827
50 100 150{ 0.0723 3.40E-05 3.57E-05 0.951417
100 200 300, 0.0720 1.58E-05 1.94E-05 0.813830
200 400 600 0.0721 7.66E-06 8.81E-06 0.868988
500 1000 1500 0.0723 3.04E-06 3.95E-06 0.770573
1000 2000 3000{ 0.0722 1.51E-06 1.87E-06 0.810509
2000 4000 6000 0.0722 7.52E-07 9.15E-07 0.822380
3000 6000 9000/ 0.0722 5.04E-07 6.64E-07 0.759045
5000 10000 15000 0.0722 3.01E-07 3.76E-07 0.799702
Sample sizes Var(1, (0))/
St.1 St.2 Total I.(0) Var(I, (0)) Var,1. (0) Var,in(Iy (0))
5 16 20| 0.0717 0.00040623 0.00032336 1.256281
10 30 40 0.0715 0.00015658 0.00018072 0.866424
20 60 80| 0.0721 6.85E-05 8.62E-05 0.793999
50 150 200{ 0.0721 2.44E-05 3.89E-05 0.626360
100 300 400, 0.0719 1.16E-05 1.75E-05 0.663747
200 600 800| 0.0722 5.75E-06 8.63E-06 0.666146
500 1500 2000 0.0723 2.27E-06 3.88E-06 0.585441
1000 3000 4000{ 0.0722 1.13E-06 1.74E-06 0.649193
2000 6000 8000 0.0723 5.66E-07 8.91E-07 0.634742
3000 9000 12000, 0.0722 3.77E-07 6.05E-07 0.622750
5000 15000 20000 0.0722 2.25E-07 3.67E-07 0.614369
Two strata
1= 62=20

11=100; =200
Stratum 2 (the less unequal stratum) is over-sampled
Population I(0)=.0722
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Table 3.15b
Weighted Approximations of Inequality Index Variances
under Stratified Sampling:
Simulation results for Theil’s Measure: 1(0)

Sample sizes Var(l, (0))/
St.1 St.2 Total I(0) Var(ls (0)) Varu(I. (0)) Vargm(I (0))
5 20 25/ 0.0718 0.00027848 0.0003583 0.777207

10 40 50, 0.0713 0.00011087 0.00017274 0.641868
20 80 100 0.0721 5.22E-05 8.55E-05 0.609910
50 200 250| 0.0724 1.92E-05 3.68E-05 0.521435
100 400 500 0.0720 9.07E-06 1.87E-05 0.485504
200 800 1000 0.0723 4 61E-06 9.20E-06 0.500416
500 2000 2500{ 0.0723 1.82E-06 3.43E-06 0.530992
1000 4000 5000 0.0723 9.11E-07 1.68E-06 0.541968
2000 8000 10000| 0.0722 4.54E-07 9.78E-07 0.463685
3000 12000 15000 0.0722 3.01E-07 5.82E-07 0.517260
5000 20000 25000 0.0722 1.80E-07 3.32E-07 0.543724

Two strata
O01= 06220
11=100; n>=200

Stratum 2 (the less unequal stratum) is over-sampled

Population [(0)=.0722

—
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Table 3.16a
Weighted Approximations of Inequality Index Variances
under Stratified Sampling:
Simulation results for Theil’s Measure: I(1)

Sample sizes Var(l, (1))/
St.1 St.2 Total LJ(1) Var(Io (1)) Varg(w (1)) Varu(I. (1))
5 10 15| 0.0672 0.01707368 0.00028061 60.843990
10 20 30 0.0664 0.00416773 0.00013196 31.682351
20 40 60f 0.0668 0.00106844 6.40E-05 16.681458
50 100 150f 0.0670 0.00018564 2.47E-05 7.517245
100 200 300| 0.0667 5.25E-05 1.35E-05 3.902910
200 400 600 0.0668 1.63E-05 6.11E-06 2.673534
500 1000 1500, 0.0669 4.18E-06 2.74E-06 1.523953
1000 2000 3000{ 0.0668 1.69E-06 1.30E-06 1.300312
2000 4000 6000| 0.0668 7.46E-07 6.41E-07 1.163130
3000 6000 9000] 0.0668 4.76E-07 4.59E-07 1.038198
5000 10000 15000/ 0.0668 2.75E-07 2.61E-07 1.050877
Sample sizes Var(l, (1))/
St.1 St.2 Total L{(1) Var(l, (1)) Vargd. (1)) Varu(I. (1))
S 15 20| 0.0668 0.00840511 0.0002322 36.197929
10 30 40| 0.0664 0.00210066 0.0001256 16.724946
20 60 80| 0.0668 0.00054802 5.97E-05 9.177736
50 150 200f 0.0668 9.89E-05 2.67E-05 3.709581
100 300 400 0.0666 2.94E-05 1.20E-05 2.454923
200 600 800 0.0668 9.82E-06 5.98E-06 1.641853
500 1500 2000, 0.0669 2.74E-06 2.66E-06 1.028842
1000 3000 4000 0.0668 1.17E-06 1.20E-06 0.975247
2000 6000 8000 0.0669 5.36E-07 6.20E-07 0.864122
3000 9000 12000/ 0.0668 3.46E-07 4.21E-07 0.820804
5000 15000 20000 0.0668 2.02E-07 2.55E-07 0.792093
Two strata
G1= 62=20

R1=100; pu=200
Stratum 2 (the less unequal stratum) is over-sampled
Population I(1)=.0668

—
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Table 3.16b

Weighted Approximations of Inequality Index Variances

under Stratified Sampling:

Simulation results for Theil’s Measure: I(1)

Sample sizes Var(l, (1))/

St.1 St.2 Total I.(1) Var(ly (1)) Varu(I (1)) Vargu(Iv (1))

5 20 25| 0.0669 0.00504927 0.00025756 19.604056

10 40 50/ 0.0663 0.0012716  0.00012218 10.407619

20 80 100f 0.0668 0.00033774 5.92E-05 5.709327

50 200 250, 0.0670 6.34E-05 2.56E-05 2.476735

100 400 500| 0.0667 1.95E-05 1.29E-05 1.514185

200 800 1000 0.0669 6.87E-06 6.34E-06 1.084180

500 2000 2500{ 0.0669 2.04E-06 2.36E-06 0.862621

1000 4000 5000{ 0.0669 8.99E-07 1.15E-06 0.780876

2000 8000 10000{ 0.0668 4 19€E-07 6.73E-07 0.622657

3000 12000 15000 0.0668 2.72€E-07 3.96E-07 0.686389

5000 20000 25000 0.0668 1.60E-07 2.28E-07 0.701573
Two strata
1= 02=20

11=100; p2=200
Stratum 2 (the less unequal stratum) is over-sampled
Population I(1)=.0668

—
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Table 3.17a
Weighted Approximations of Inequality Index Variances
under Stratified Sampling:
Simulation results for Atkinson’s Measure: A(1)

Sample sizes Var(A, (1))/
Se.1 St.2 Total Aw(1) Var(Aw(1)) Varu(Aw (1)) Var.(A. (1))
5 10 15/ 0.0696 0.00060882 0.00034432 1.768188
10 20 30/ 0.0690 0.00021101 0.00016351 1.290475
20 40 60( 0.0695 8.63E-05 7.92E-05 1.089858
50 100 150{ 0.0698 2.93E-05 3.08E-05 0.949743
100 200 300| 0.0695 1.36E-05 1.68E-05 0.813083
200 400 600| 0.0696 6.62E-06 7.62E-06 0.869027
500 1000 1500 0.0697 2.63E-06 3.42E-06 0.770422
1000 2000 3000{ 0.0697 1.31E-06 1.62E-06 0.810348
2000 4000 6000 0.0696 6.51E-07 7.92E-07 0.822411
3000 6000 9000 0.0697 4.36E-07 5.74E-07 0.759108
5000 10000 15000 0.0697 2.60E-07 3.26E-07 0.799711
Sample sizes Var(A. (1))/
St.1 St.2 Total Aw(l) Var(Aw(1)) Varu.(Aw(1)) Var.,(A. (1))
5 16 20] 0.0690 0.00034693 0.00027679 1.253402
10 30 40; 0.0690 0.00013425 0.00015543 0.863763
20 60 80| 0.0695 5.89E-05 7.44E-05 0.792293
50 150 200 0.0696 2.10E-05 3.36E-05 0.626061
100 300 400 0.0694 1.00E-05 1.51E-05 0.663118
200 600 800| 0.0697 4.98E-06 7.47E-06 0.665860
500 1500 2000| 0.0697 1.96E-06 3.35E-06 0.585550
1000 3000 4000 0.0696 9.79E-07 1.51E-06 0.648998
2000 6000 8000| 0.0697 4.90E-07 7.71E-07 0.634725
3000 9000 12000{ 0.0697 3.26E-07 5.23E-07 0.622708
5000 15000 20000{ 0.0697 1.95E-07 3.17E-07 0.614334
Two strata
01= 062=20

11=100; pz=200
Stratum 2 (the less unequal stratum) is over-sampled
Population A(1)=.06966

—
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Table 3.17b

Weighted Approximations of Inequality Index Variances

under Stratified Sampling:

Simulation results for Atkinson’s Measure: A(1)

Var(Aw (1))/
Varu(Aw (1))

Sample sizes
St.1 St.2 Total Ay, (1) Var(Ay (1)) Varm(Aw (1))
5 20 25| 0.0691 0.00023717 0.00030636
10 40 50| 0.0688 9.51E-05 0.00014877
20 80 100 0.0695 4. 49E-05 7.38E-05
50 200 250] 0.0698 1.66E-05 3.18E-05
100 400 500 0.0694 7.85E-06 1.62E-05
200 800 1000f 0.0697 3.98E-06 7.96E-06
500 2000 2500{ 0.0697 1.58E-06 2.97E-06
1000 4000 5000{ 0.0697 7.89E-07 1.46E-06
2000 8000 10000 0.0697 3.93E-07 8.47E-07
3000 12000 15000 0.0697 2.60E-07 5.03E-07
5000 20000 25000 0.0697 1.56E-07 2.87E-07
Two strata
1= 62=20

r1=100; u>=200
Stratum 2 (the less unequal stratum) is over-sampled
Population A(1)=.06966
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0.639479
0.608090
0.520922
0.484991
0.500185
0.530887
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Table 3.18a

Weighted Approximations of Inequality Index Variances
under Stratified Sampling:

Simulation results for Atkinson’s Measure: A(2)

Sample sizes Var(A. (2))/

St.1 St.2 Total Aw(2) Var(Aw(2)) Varim(Aw(2)) Varg.(A.())

5 10 15] 0.1386 0.00104221 0.00146726 0.710310

10 20 30, 0.1384 0.00051566 0.0007668 0.672476

20 40 60 0.1401 0.00026928 0.00036336 0.741071

50 100 150, 0.1408 0.00011316 0.00015373 0.736078

100 200 300, 0.1402 5.36E-05 8.00E-05 0.670044

200 400 600 0.1405 2.72E-05 3.71E-05 0.733294

500 1000 1500 0.1408 1.10E-05 1.62E-05 0.678902

1000 2000 3000{ 0.1407 5.59E-06 7.80E-06 0.717029

2000 4000 6000{ 0.1407 2.78E-06 3.75E-06 0.743044

3000 6000 9000| 0.1408 1.89E-06 2.82E-06 0.672475

5000 10000 15000/ 0.1408 1.12E-06 1.56E-06 0.719887

Sample sizes Var(A, (2))/

St.1 St.2 Total Aw(2) Var(Aw(2)) Varim(A«(2)) Vara(A.(2))

5 15 20 0.1374 0.00067612 0.00116156 0.582077

10 30 40| 0.1383 0.00036387 0.0007006 0.519364

20 60 80 0.1401 0.00019704  0.00034702 0.567808

50 150 200{ 0.1404 8.02E-05 0.00015993 0.501703

100 300 400{ 0.1401 4.15E-05 7.54E-05 0.551046

200 600 800 0.1407 2.07E-05 3.58E-05 0.578573

500 1500 2000/ 0.1409 8.33E-06 1.62E-05 0.515335

1000 3000 4000 0.1407 4.18E-06 7.37E-06 0.567648

2000 6000 8000 0.1409 2.10E-06 3.74E-06 0.560634

3000 9000 12000 0.1408 1.40E-06 2.51E-06 0.558526

5000 15000 20000 0.1407 8.34E-07 1.53E-06 0.546749
Two strata
1= 62=20

R1=100; p>=200

Stratum 2 (the less unequal stratum) is over-sampled

Population A(2)=.14075
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Table 3.18b
Weighted Approximations of Inequality Index Variances
under Stratified Sampling:
Simulation results for Atkinson’s Measure: A(2)

Sample sizes Var(A. (2))/

St.1 St.2 Total Ay, (2) Var(Aw (2)) Varm(Aw (2)) Varg(A. (2))

5 20 25| 0.1373 0.00049827 0.00127377 0.391180

10 40 50, 0.1377 0.0002651 0.00065137 0.406990

20 80 100{ 0.1401 0.00015798  0.00034791 0.454092

50 200 250f 0.1408 6.43E-05 0.0001486 0.432374

100 400 500, 0.1400 3.15E-05 7.63E-05 0.412339

200 800 1000| 0.1409 1.72E-05 3.97E-05 0.431634

500 2000 2500 0.1409 6.68E-06 1.45E-05 0.461660

1000 4000 5000{ 0.1409 3.40E-06 7.24E-06 0.470090

2000 8000 10000/ 0.1408 1.70E-06 4.13E-06 0.412113

3000 12000 15000 0.1407 1.13E-06 2.51E-06 0.448263

5000 20000 25000 0.1408 6.74E-07 1.40E-06 0.482495
Two strata
C1= 62=20

11=100; =200

Stratum 2 (the less unequal stratum) is over-sampled

Population A(2)~=.14075
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3.5.2 Example: Kenya

Below we give a simple example of the large changes in estimated inequality when the
sampling structure is ignored using an example of urban income data from Kenya.!3
This sample is stratified by geographical region, and then sub-stratified within re-
gions. Though information on the exact nature of the stratification scheme is not
available, we are given weights which will inflate the sample to population totals.
Using this information, we can calculate the five measures of inequality for this data.
comparing the inequality measures calculated with and without weights. The upper
and lower bounds are the approximate, asymptotically normal 95% confidence bounds
given by the weighted process described above, which are based upon the assumption
of sampling with replacement from an infinite population. (In other words, we have
not used any finite population correction.) We saw the performance of this method
of calculating standard errors in the simulation above. Since the sampling propor-
tions are not extremely different between observations, we have some confidence that
the weighted estimates of the variances will give a reasonable approximation. The
95% upper and lower bounds are calculated as the estimated inequality measure
+1.96V/est. variance.
Up to this point we have abstracted from any problems of defining household as

opposed to individual income. The survey of Kenyan urban households includes mar-

13This data is originally from the Central Bureau of Statistics and the Ministry of National Planning
and Development of Kenya. | am grateful to Mwangi wa Githinji for making this data available.
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ket activities as well as imputed income from non-market and household production.
It lumps all of a household’s income in one group, without attempting to allocate
income (or consumption) to individuals within the household. To measure inequality.
three options present themselves. The first is to simply take the household as the unit
of analysis and estimate income inequality across households. The problem with this
approach is that we do not take into account household size. One alternate option is
to simply divide household income by the number of individuals in the household. use
the household inflation weights, and calculate inequality across per-capita household
income. Another way to account for household size is to use some type of household
equivalence scale. Because of economies of scale in cooking and lodging, it may take
less per person income to support four people than one, for example. Also, household
with many members may include young children or elderly family members whose
consumption needs are smaller than adults. Since we do not have information on
the composition of the household, a simple approximation may be to count the first
two members of the household as full units and count additional members as frac-
tional units. Below we present results using a household equivalent of .8 and one
of .6 for each member greater than two in a household. This is admittedly a very
rough approximation, but may give a better indication of welfare and inequality. A
final alternative is to divide the income of the household across all individuals in the
household and then calculate inequality over individuals. In as much as poorer house-

holds are larger, this will give the appearance of greater inequality. It may also not
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be representative of welfare for the same reasons that equivalence scales are useful

Tables 3.19 through 3.23 present these five different ways of attributing income to
the members of the household for the five inequality measures considered. In all of the
tables, we compare the unweighted and the weighted calculation of inequality under
the various definitions of income and highlight the change in measured inequality for
the weighted calculation. The first thing to notice is that the different inequality
measures are affected differently by the weighting. For per-capita household income
(Table 3.20), for example, the coefficient of variation and Theil’s second measure
(I(1)) decrease sixteen and eighteen percent, respectively.

However, Atkinson’s measure with € = 2, (A(2)), hardly shows any change. In this
case, the weighting doesn’t seem to matter much for this choice of . However. if we set
€ = 1, the resulting change in the measure when we account for the sample structure
is similar to Theil’s measure, I(0). As € increases, the social welfare function implied
by Atkinson’s measure become Rawlsian, and thus the only incomes that matter are
those at the bottom of the distribution. In this sample, there are several very large
incomes which have relatively small weights, and A@) is discounting these incomes
for both the weighted and unweighted case. These incomes at the top end of the
distribution are having a disproportionately large effect on the other measures, an
effect that is being corrected when we weight the measures.

We also notice the effect of the various ways of considering household income. As

expected, dividing up all of the income equally amongst individuals in the household
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and then measuring either per-capita household income or inequality over individual
incomes gives the highest values for inequality. This probably overstates inequality
(at least our intuitive understanding of inequality) because it does not consider the
economies of scale in consumption for larger households, nor the smaller needs of
young children. In Table 3.19, we consider household income without adjusting for
household size at all. This gives the lowest values for income inequality, not surprising
if larger households tend to be poorer. These measures probably over-state inequality
for that reason. Tables 3.21 and 3.22 present two different versions of the crude
equivalence scale. Despite the naive application of this idea, these probably give the
statement of inequality which most matches out intuitive understanding of inequality.

As we have seen here, ignoring the stratification in the data leads to biased estima-
tion of inequality. As in the mean case, it is straightforward to correct our inequality
indices using a scheme which assigns weights that are inversely proportional to sample
inclusion probabilities. Likewise, we can calculate standard errors which are adjusted
for the weighting scheme. These estimated variances will tend to give an under-
estimate of the true variance of the inequality measure. However, this effect is minor
provided that the sampling disproportions are not too large. Full information about
the sampling scheme is needed to calculate unbiased standard errors. It may also be
possible to conduct a weighted bootstrap calculation of standard errors which would
be more accurate than the standard errors of the simulation above. This section thus

provides several interesting areas of future research.
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Table 3.19
Inequality in the Kenyan Urban Income Distribution:
Household Income

lower 95% bound Estimate lower 95% bound
Cv 3.0834 4.3005 5.5177
CV, 2.1180 3.3924 4.6668
change -21%
1(0) 0.7491 0.9042 1.0594
I.(0) 0.6741 0.7943 0.9144
change -12%
I(1) 1.0076 1.3574 1.7072
I.(1) 0.7540 1.0490 1.3440
change -23%
A1) 0.5323 0.5951 0.6580
A1) 0.4938 0.5481 0.6024
change -8%
A(2) 0.7387 0.7796 0.8205
A(2) 0.7335 0.7689 0.8043
change -1%
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Table 3.20
Inequality in the Kenyan Urban Income Distribution:
Per-capita Household Income

lower 95% bound Estimate lower 95% bound
Cv 3.8644 4.9094 5.9544
CVv, 2.8146 4.1463 5.4781
change -16%
1(0) 0.8061 0.9863 1.1665
I+(0) 0.7348 0.8858 1.0368
change -10%
I(1) 1.1365 1.5221 1.9078
(1) 0.8873 1.2459 1.6046
change -18%
A1) 0.5598 0.6271 0.6943
A1) 0.5253 0.5876 0.6499
change -6%
AQ2) 0.7989 0.8366 0.8743
An(2) 0.7939 0.8287 0.8635
change -1%
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Table 3.21
Inequality in the Kenyan Urban Income Distribution:
Household Income (Equivalent Scales = .8)

lower 95% bound Estimate lower 95% bound
Ccv 3.2148 4.5708 5.9269
Cv, 2.1597 3.6568 5.1540
change -20%
1(0) 0.7234 0.8900 1.0566
I+(0) 0.6517 0.7831 0.9145
change -12%
I(1) 1.0198 1.3997 1.7795
I(1) 0.7628 1.0904 1.4180
change -22%
A(1) 0.5209 0.5893 0.6578
A1) 0.4830 0.5430 0.6031
change -8%
A(2) 0.7497 0.7932 0.8367
An(2) 0.7451 0.7836 0.8222
change -1%

Household size is corrected using equivalent scale of .8 for all members of the household
after first two. (e.g., a household with 4 people is treated as 3.6 people.)
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Table 3.22
Inequality in the Kenyan Urban Income Distribution:
Household Income (Equivalent Scales = .6)

lower 95% bound Estimate lower 95% bound
Ccv 3.1523 4.5460 5.9397
CV, 2.0847 3.6079 5.1310
change -21%
1(0) 0.7137 0.8793 1.0449
I.(0) 0.6417 0.7711 0.9006
change -12%
I(1) 1.0039 1.3858 1.7677
L.(1) 0.7461 1.0721 1.3981
change -23%
A(1) 0.5162 0.5849 0.6537
A1) 0.4776 0.5375 0.5974
change 8%
AQ2) 0.7406 0.7849 0.8291
A(2) 0.7356 0.7746 0.8136
change -1%

Household size is corrected using equivalent scale of .6 for all members of the household
after first two. (e.g., a household with 4 people is treated as 3.2 people.)
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Table 3.23
Inequality in the Kenyan Urban Income Distribution:

Individual Income
lower 95% bound Estimate lower 95% bound
Ccv 3.2703 4.9770 6.6836
Cv, 1.9825 4.0168 6.0511
change -19%
I(0) 0.6873 0.9679 1.2485
I«(0) 0.7100 0.8573 1.0047
change -11%
i(1) 0.9788 1.4327 1.8866
Iw(1) 0.7244 1.1251 1.5257
change -21%
A1) 0.5135 0.6201 0.7267
A1) 0.5132 0.5757 0.6382
change -7%
AQ2) 0.8046 0.8410 0.8775
A(2) 0.7965 0.8296 0.8628
change -1%
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3.6 Clustering

As shown in section 2.4 above, when estimating the mean, we know that if we esti-
mate the variance of the estimator ¥ using the formula for RSWR, that we need to
inflate that estimate by the design effect, d, (equation (68) above) to get an unbiased
approximation of the true variance. The same is true for inequality measures, though
the design effect in this case will most likely take a different form than d and will
be different for different inequality measures. For clarification, we will refer to d in
equation (68) as dj.

As a preliminary exercise, we conduct a simulation to examine the design effect
for three of the inequality measures considered above. The purpose of the simulation
is to get a rough idea of the impact of clustering on the standard errors of these
inequality measures and to compare the relative impact of clustering on estimation of
standard errors for mean and inequality measures. Below, we will demonstrate how

to develop the exact design effect for the different estimators.

3.6.1 Preliminary simulation results: clustering

The point of the simulation exercise is to demonstrate the effect on inequality mea-
surement of cluster sampling of the type usually found in economic data. We assume
the same structure for the data as in section 2.4, equations (63) and (64) above.

For the simulation, we set 4 = 100 and 62 = 900. The cluster size was set equal

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



to ten, and the cluster effects a were generated from a N(0,02) distribution. The
idiosyncratic errors, €, were generated from a N(0,62) distribution. Based upon the
model of (63) and (64), p = f*n-crf’ so by properly choosing 62 and 62 such that
62 + 02 = 02 = 900, it is possible to generate different values of p-

Here we report the results for a total sample size of 100: 10 clusters with 10
elements in each cluster. The sample is generated by choosing a draw for o2 for each
cluster and a draw of o2 for each element. We then estimate p, the design effect for
the mean case, d, and the Var(CV) using Kakwani’s asymptotic method. This is
compared to the variance in simulation over 1000 repetitions of the experiment. We
are then able to calculate a simulated design-effect, dg;,, for each inequality measure
by dividing the simulated approximation to the true variance by the value calculated
using the asymptotic method (which is based upon independent draws of the sample.)
Average results over the 1000 repetitions are presented in Table 3.24 below.

The estimated design effect for the mean is given by d (first p is estimated using
(70) and this value is then plugged into the expression for the design effect (67).) The
design effect in simulation for the particular inequality measure is given by A sim.(.)-
The design effects for the inequality measures in all cases are less than for the mean
case. However, they are much greater than one. This indicates that asymptoti-
cally normal approximates to inequality measure confidence intervals will be strongly

under-estimated.
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Table 3.24
Preliminary Simulation Results

Inequality Measurement in Clustered Samples

P d CV Va(CV ) Varagm(CV) demcv
08 1.72 .2975 .00051 .00061 1.20
Coefficient of Variation: | 17 2.53 2971 .00050 00084 1.68
45 5.05 .2924 .00047 .00177 3.77
.54 5.86 .2889 .00046 00217 4.72

g d I Var(I(1)) Vargm(I(1)) Asim.r(1)
08 1.72 .0466 .000061  .00G07 1.15

Theil’s Measure: 17 2,53 .0465 .000060  .00010 1.67
45 5.05 .0455 .000057  .00021 3.68
54 586 .0447 .000056  .00026 1.64
B d AR Var(AQ)) Varam(A@) demaa
08 172 .1359 .00336 00573 1.71

Atkinson’s Measure: | .17 253 .1318 .00281 .00568 2.02
45 505 .1235 00191 00685 3.59
54 586 .1221 .00198 00748 3.78
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3.6.2 Design effects for inequality measures: coefficient of variation

Just as we are able to calculate a design effect for the case of the mean model. we
can do so for inequality measures as well The variance of our inequality measure
under clustered sampling will take the form Var(7) - d;. From the simulation above,
we expect that d; will be positive, but less than dj. We will want to consider whether
this is a general rule or dependent upon functional forms. ’

As an example, we will derive the variance for the coefficient of variation under
clustered sampling, since we have considered the Var(¢d) in the random sampling
without and with replacement cases. Applying this process for deriving the variances
of the other inequality measures considered above in the case of clustered sampling

is straightforward.

The sample model is
Yei = M + Ui, c=1,..0C. t=1,....M, (166)

where we assume, as in section 2.5 above, that the sampling is random sampling with
replacement (or from an infinite population), thus allowing us to ignore any finite
population corrections. As is standard in this literature, we assume the that the

sample obeys the following
Eu; = 0, Eu2i=az,Euc.~ucj=po'2,i76j (167)

Fususj = 0,c#c.
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Recall that p is the intra-cluster correlation coefficient. Again, we assume that ele-
ments within clusters are correlated, but across clusters the elements are independent.
The assumptions in (167) are sufficient to determine the size of the design effect in
the mean case, however, for the case of inequality measures we will have to consider
higher-order correlations as well. Therefore, we will suppose that the following two

assumptions also hold

Evluy; = 0113 ,i5#jande=c
= 0, c#c

Euziu:j = Ouzzw ,:tFJjandc=c (168)
= 0, c#c.

Following this notation, we can also write po? = &3,,- Note that 3.4, F112.0, & 1122w
are the same as in equations (10) and (11), but are within-cluster moments only.
Here we are implicitly imposing the assumption that 613 4, 0112.0, 01122.» are constant
across clusters. This is done both for convenience, as well as for practicality. When
we consider sample estimates of these moments, assuming constancy across clusters
allows us to pool all of the data to estimate these values. This also mimics the usual
statistics literature, where 0,3 ,, is assumed constant across clusters.

The total sample size is n =zc: M. and the form of the covariance-variance matrix

of the sample data is as in 65 above.
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Applying the method used above from (96), the variance of the coefficient of

variation will be

_ - [(8CcV\? . _dCcvaecvy
Var(CV) = V o 2C YY) ————
(V) = Var(B) ( - ) + 2000 1) 2 2]
_ [ecv\? 1
+Var(y) (?) +0 (W) . (169)
where 3; = 15" y?. Under cluster sampling, we can write
. - v\? N A i
arepust( ) T crust(02) ( 3_[32) + 2Covyust (P2, 7) 35, 9 (170)
acv\? 1
+Varaus(7) (W) +0 (m) -

where the ”clust” subscript refers to the variance of these functions under the as-
sumption of clustered sampling.
As seen in (67), when the sample is clustered, the mean has variance

Zul1 + (3 - 1)0] (171)

;lsuo

Vclust (y) =

where M is the sum of cluster sizes weighted by the cluster’s proportion of the sample,

c
1Y M?. In Appendix B, we derive
c=1

- 1 —_—
Varaus(fz) = — [(’Yz +3—M)o* + duvo® + 4#’62] (172)
4M-1) 1 2
+— [-Gllzz,w + pon2w + (1 Ulz,w} .
n 4
and
~ o 2ue® M-1
CovVust(52,J) = n +E + Ruoizw + o112.0) - (173)
n n n
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Combining the results in (98), (99), (170), (171), (172) and (173) gives the variance

of the coefficient of variation under clustered sampling

—— 1 — 62 0'3‘71 64
Vca‘dust(CV) = —{(72+3—M)4—#2— #3 +E}

n
M-11 (1613w Olize 063012 _
+ _2{_ 11122. _ 2w ;2. } (174)
n o pld4 o e 7
We can also write this as
1

nVardu,,t(C/'”‘\/) = ':0’4 (‘Yz +3 - H) + oz (H - l)]

4022

_% [0-371 + C112.w (H - 1)] + ;'7:.(1 +p (2\_/! _ 1))_ (175)

In practice we can calculate p = 6263, using (70),

C [ Mc ~2 -
J112 = e=1 Z:‘:l_ 37 u‘:j ucjl (176)
"" n(M 1)
and
C Mc Mc a3 A2
. _ 2ac=1 2 i=1 Zj;éj Ucj Uejr (177)

It is perhaps easier to see what is going on if we express this as

Varetust(CV) = Vargswr(CV) + dz, (178)
where
M-1[1 Cl13.w o? -
dey = n? [47 (Ullzz,w - 0'4) - ]—:- + an.wlﬁ . (179)

In practice, it is simple to calculate dzy, by replacing y with 7, replacing 62, 6112,

O112.wy O13,» With their sample estimates, and adding this (additive) design effect to the
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usual calculation (wrongly assuming RSWR) of the variance of CV. We can see that
O13.» Will be positive when p is positive (which will normally be the case for clustered
data) and that (o122, — 0*) will be positive. &2, reaches its minimum of o* when
the error terms within the same cluster are independent. The only indeterminate term
1S 0112,0- The design effect will be positive whenever é (611220 — 0%) + alz,w‘%—; >
”“%. We would generally expect this to be the case, as seen from the preliminary
simulation.

In the mean case, the design effect was expressed as a multiplicative design effect.

We also provide the design term in this way by calculating

Var cv
dev = ctuee( V) : (180)
VCZTRS;VR(CV)
The result
dev =1+ (H _ 1) £ (Ouasw — 0%) — 4001130 + 400012, (181)

o? p2c? (v + 2) — duoy, + 40t
is quite easy to interpret. First of all, if there is only one cluster. then M will equal one
and the design effect will be one. If the data are independent, then Ol12.0 = 120 =0
and 01122, = 0*, and again the design effect will be one. This is as we expected.

A parallel approach can be taken to derive design effects for the other inequality
measures. Testing the impqrtanoe of the design effect in calculating standard errors
for inequality measurement remains an important project. Unfortunately, as practi-

tioners we often do not have information on which element belongs to which cluster,
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making it impossible to calculate 0,22, and ¢;3,, even when information on the
size of p is available.

By conducting a simulation study of the properties of CV under clustering, we
can determine whether or not this method of estimating the design effect works well
in practice. With this goal in mind, we conducted a detailed simulation study of
the effects of clustered sampling on the coefficient of variation, and compared the
estimated variance with the simulated variance, both ignoring and taking into account

the clustering of the data. The results are reported in the next section.

3.6.3 Simulation: coefficient of variation under clustered sampling

To conduct the simulation, we write the clustered sample as an error components

model
Y =p+ac+¢, (182)
or
Yei = 1 + Ug. (183)
As before we assume
Eu; = 0, Eu:,-=0'2,Euducj=pa'2,i7éj (184)

Eugus; = 0,c5#;
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but now we also assume

2 . .
Eua'ucj = Oligw:lF)

Eufiucj = 0,c#/;

Euf_‘-ufj = 01122,w z ?é] (185)
Eulul, = 0,csc.

Given (182) through (185), the additive design effect for the coefficient of variation

will take the form

M-1
nu?

& = —1—(7 +2a*)—7'—'°+crzd—z (186)
cv 402 \#* T ) T, *ut|

In terms of creating the simulation, note that the skewness and kurtosis of the id-
losyncratic error terms, €, will have no effect on the design effect of CV. Thus. the
design effect term can be controlled simply by choosing the form of the cluster-specific
error terms, a., and its skewness, <) o, and kurtosis, v, .. The effect of p on the design
effect of CV comes through 2 which will equal po? for the specification in (182). We

can re-write (186) exclusively in terms of p, v14, V2.0, and Y30

_e-1)

d
cVv n'uz

Zp0? (y20 +2) — pioi e | Tul (187)
4 pooopl

When all of the error terms are normally distributed, this becomes

e(M-1)11 ,, o
dZ'V.narmal = npz §P0': + !‘7 . (188)

Under normally distributed cluster-specific errors, therefore, there is still a positive
design effect for the coefficient of variation, as was seen in the preliminary simulation.
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Tables 3.25 through 3.33 present a selection of results from the simulation exer-
cise. The first three tables, Tables 3.25, 3.26 and 3.27 present simulation results for
normally distributed error terms. The idiosyncratic error terms, e.;, are distributed
N(0,900(1 — p)) and the cluster-specific error terms, a., are distributed N (0, 900p0).
This provides a distribution of the overall error term of N (0, 900), a correlation co-
efficient of p, and a CV of .3, chosen to match that of the preliminary simulation
where the design effect was left uncorrected. The sample size is 100, with 10 clusters
of 10 elements. The results in the tables are averages from 1000 repetitions of the
simulation.

In Table 3.25, we present the estimated Var(CV) calculated using the formula
of Cramer from equation (107) and correct it for the clustering using (179). We
present the corrected and uncorrected variances in columns 5 and 3. respectively.
Column 10 shows the ratio of the estimated Var(C'V) corrected for clustering to the
simulated Var(CV ). In the case of normally distributed errors, the corrected estimate
of the variance tends to slightly over-estimate the true variance by 10-80%. Column
9 provides the ratio of the uncorrected estimated variance to the true (simulated)
variance. Here we can see that by ignoring the clustering, we will under-estimate the
variance of CV by 300% for even moderate values of p (o = .4).

In Table 3.26 we present the estimated Var(CV) calculated using equation (106)
which is asymptotically equivalent to (107), but will give slightly different results in

practice. As we can see, the results are roughly similar. The corrected variance does
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tend to over-estimate the actual variance somewhat, however, the damage done by
leaving the variance estimated uncorrected for clustering is much worse.

Table 3.27 provides the expected dcv calculated from (186) using the actual pa-
rameter values which were used to generate the data: v, = ¥2.o = 0. and p varying
accordingly. In the second column, we provide dcv which is calculated as the design
effect based on the averages of ¥4, 2.4, €tc. over the 1000 simulations. As we can
see from column 3, these two numbers match up quite closely. d?'cv are the design
eflects which were calculated from each sample of 100, averaged over the 1000 repe-
titions. The fact that this does not match with dey very well indicates that in small
samples. the estimated values of 01224, T112.0, and p are highly variable and biased.
This bias is averaged out over 1000 repetitions as we see in column 2. This would
indicate that caution should be used in applying the above results in the small-sample
case.

Table 3.28 through 3.30 provide the same exercise with the same parameter values
for a larger sample size. The average cluster size was kept at 10, but the number of
clusters was increased to 100, giving a total sample size of 1000. As can be seen
immediately from column 10 of Tables 3.28 and 3.29, the degree of over-estimation
of the variance using the cluster-corrected estimate derived in this paper is much
smaller than that in Tables 3.25 and 3.26 for the smaller sample size. This is quite
encouraging.

The design effect derived in (186) and (188) allow us to explore the impact of
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non-normality in combination with clustering for the coefficient of variation and its
variance. Recall that income distributions are highly non-normal and positively-
skewed. If the underlying model which we have in mind is that of (182), and we believe
that the non-normality comes from cluster effects, then we should be concerned about
such effects on computation of the variance and confidence intervals for our inequality
measures.

It seems quite reasonable that the skewness in the income distributions comes from
the cluster effects more than from the idiosyncratic error terms. If we think of clusters
as geographical areas or neighborhoods, we can imagine a wealthy neighborhood with
high a. and incomes roughly normally distributed around this high cluster mean.
Likewise, for a poor rural community, the cluster mean is low, with incomes roughly
normally distributed around that mean. It therefore seems quite reasonable to be
concerned about non-normality in the cluster-specific portion of the model.

We undertook an extensive simulation of non-normal error terms and their effect
on the standard error of the coefficient of variation. For small sample sizes (200 or
less) the proposed design effect works rather poorly, since the components of d?, arc
difficult to measure in small samples and the skewness and kurtosis terms are highly
variable. In larger samples, the design effect correction works quite well. One such
example is provided in Tables 3.31 to 3.33.

The layout of these tables is as before, with CV=.3 being chosen as the conve-

nient normalization allowing comparison with what has gone before. Here we choose
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element-specific errors, €, to be normally distributed, but the cluster-specific error
terms are log-normally distributed with Ea, = 0, y1, = 4.2, and 72, = 24.4. The
variance is as before in order to generate an overall average CV of .3

As can be readily seen in the tables, the corrected Varq,q (C/”T/ ) matches the simu-
lated variance much better than the uncorrected estimate. In the case of lognormally
distributed data, however, the Vardu,t(é‘f/ ) tends to provide an under-estimate of
the true (simulated) variance (unlike the case of normally distributed errors where
Varqus:(CV) provided an over estimate of the simulated variance. )

Overall, the simulation provides quite positive support for the use of the design
effect derived above for estimating the variance of the coefficient of variation. Caution
should be exercised in small samples, but even in the case of n=100, the corrected
Varays:( cv ), though biased, provided a much better approximation of the true vari-

ance than the uncorrected estimate.

14This feature of the simulation-that Vardu,t(é\V ) under-estimated the true variance when the
cluster-specific errors were lognormal held true for many different parametrizations of the model
Even changing the skewness and kurtosis dramatically, as well as increasing or decreasing the sample
size, provided no change in this area. Under lognormality, some portion of the design effect term.
d¢y, is being systematically under-estimated, just as in the normal case it is being systematically
over-estimated. Like in the normality case however, this bias does decrease as n — oc.
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d
cv dev| dev’dey| Aoy |doyldoy

0.000000 | 0.000001 - -0.000004 ~

0.000047 | 0.000046 0.99 0.000155 | 3.327966
0.000113 | 0.000103 0.91 0.000331 | 2.918871
0.000200 | 0.000182 0.91 0.000567 | 2.828283
0.000308 | 0.000284 0.92 0.000770 | 2.501624
0.000435 | 0.000376 0.86 0.001032 | 2.370370
0.000583 | 0.000543 0.93 0.001287 | 2.206790
0.000751 | 0.000696 0.93 0.001612 | 2.145686
0.000940 | 0.000893 0.95 0.001998 | 2.126437
0.001148 | 0.001033 0.90 0.002145 | 1.868182
0.001377 | 0.001250 0.91 0.002598 | 1.886710
0.001626 | 0.001451 0.89 0.002928 | 1.800655
0.001895 | 0.001766 0.93 0.003391 | 1.789068
0.002185 | 0.002031 0.93 0.003763 | 1.722217
0.002495 | 0.002234 0.90 0.004047 | 1.622174
0.002825 | 0.002695 0.95 0.004456 | 1.577415
0.003175 | 0.003223 1.01 0.005194 | 1.635802
0.003546 | 0.003291 0.93 0.005266 | 1.485148
0.003937 | 0.003610 0.92 0.006421 | 1.631103
0.004348 | 0.004207 0.67 0.007032 | 1.617416

d is calculated as d_., =b —l-(y +2)o" —-&’a—i+po’:
CV C¥ n#z 4o_i 2.a a ,u #z

Table 3.27

Normal Errors, n=100

~

-~

~%

Design Effect for Coefficient of Variation under Clustered Sampling:

~¥

using the true parameters from the simulation.

A

d cv is calculated using the estimated averages of the above parameters over the 1000
repetitions of the simulation

d Z' % is calculated as in equation (179) for each sample of size 100. The number

presented in column four is the average of those estimates over the 1000 simulation
repetitions.
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Table 3.30
Design Effect for Coefficient of Variation under Clustered Sampling
Normal Errors, n=1000

d - - ~% ~%
cv dey| dev/dcey dey |dey!dey
0.00000000 | 0.00000000 0.000 -0.00000063 0.000
0.00000466 | 0.00000469 1.007 0.00001387 2.978
0.00001134 | 0.00001131 0.997 0.00002934 2.587
0.00002005 | 0.00001970 0.983 0.00004724 2.357
0.00003078 | 0.00002995 0.973 0.00006419 2.085
0.00004354 | 0.00004230 0.972 0.00008545 1.963
0.00005832 | 0.00005621 0.964 0.00010981 1.883
0.00007513 | 0.00007439 0.990 0.00013750 1.830
0.00009396 | 0.00009442 1.005 0.00016891 1.798
0.00011482 | 0.00011129 0.969 0.00019238 1.676
0.00013770 | 0.00013757 0.999 0.00022887 1.662
0.00016261 | 0.00015866 0.976 0.00025739 1.583
0.00018954 | 0.00018576 0.980 0.00029578 1.560
0.00021850 | 0.00021580 0.988 0.00033219 1.520
0.00024948 | 0.00024017 0.963 0.00036358 1.457
0.00028249 | 0.00028038 0.993 0.00041722 1.477
0.00031752 | 0.00031073 0.979 0.00045547 1.434
0.00035458 | 0.00034679 0.978 0.00050204 1.416
0.00039366 | 0.00038104 0.968 0.00054329 1.380
0.00043477 | 0.00042590 0.980 0.00059985 1.380
d is calculated as d, = M-1 L(}' + 2)0" - 7—“£ +p v,
CV cv n#z 40_3 2.a a # #2

using the true parameters from the simulation.

d cv is calculated using the estimated averages of the above parameters over the 1000

repetitions of the simulation

d ZV is calculated as in equation (179) for each sample of size 100. The number

presented in columm four is the average of those estimates over the 1000 simulation
repetitions
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Table 3.33

Design Effect for Coefficient of Variation under Clustered Sampling
Lognormal Errors, n=1000

d o - . e
P cv dey| deyldcey dey |depy/dey
.00 0.0000000 0.0000000 0.0000001
.05 0.0000053 0.0000057 1.072 0.0001065 19.995
.10 0.0000277 0.0000257 0.928 0.0002606 9.405
.15 0.0000705 0.0000502 0.712 0.0003197 4.533
.20 0.0001350 0.0001032 0.765 0.0004906 3.635
.25 0.0002217 0.0002434 1.098 0.0009846 4.44]
.30 0.0003313 0.0003307 0.998 0.0013434 4.055
.35 0.0004640 0.0005170 1.114 0.0018613 4011
.40 0.0006202 0.0005600 0.903 0.0015184 2.448
45 0.0007999 0.0009249 1.156 0.0026142 3.268
.50 0.0010035 0.0008459 0.843 0.0020151 2.008
.55 0.0012311 0.0012877 1.046 0.0029725 2.415
.60 0.0014827 0.0013189 0.890 0.0029170 1.967
.65 0.0017585 0.0020378 1.159 0.0039891 2.268
.70 0.0020586 0.0023353 1.134 0.0040488 1.967
.75 0.0023831 0.0022836 0.958 0.0043211 1.813
.80 0.0027321 0.0030115 1.102 0.0049042 1.795
.85 0.0031056 0.0032662 1.052 0.0053012 1.707
.90 0.0035037 0.0042230 1.205 0.0068139 1.945
.95 0.0039265 0.0044333 1.129 0.0063257 1.611

2

: M-1| 1
d -y is calculated as d, = i l:r‘z.._(y - +2)a: p p

using the true parameters from the simulation.

0_3
_yl.a a+po'

d cv is calculated using the estimated averages of the above parameters over the 1000
repetitions of the simulation

d ZV is calculated as in equation (179) for each sample of size 100. The number

presented in column four is the average of those estimates over the 1000 simulation
repetitions
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3.7 Stratification and Clustering: Inequality Measurement
from Complex Samples

3.7.1 Example: Mexico

Now we consider an example where both stratification and clustering are present.
We correct for the stratification by weighting the inequality estimator as discussed in
section 3.5. We will use the simulated design effect to correct for the standard errors.
The data are 1989 household expenditure data provided by the Mexican National
Statistics Bureau. For this sample, it is known that p = .3 and that the average
cluster size is 12. Information about the exact nature of the clustering, however. is
not available because of confidentiality reasons.

In Table 3.34, 3.35 and 3.36, we present the weighted and unweighted estimators
of the three inequality measures considered. Again, we provide five different methods
of attributing household income among the members of the household. One thing
we notice is that the degree of bias from the sample design is much less than in the
case of the Kenyan data which we considered in section 3.5.2. These tables present
standard errors which are not corrected for the clustering in the data.

Given the information from the simulation, we can expect that for the CV, Theil’s
measure and Atkinson’s measure that the confidence intervals will be approximately
3 times too small for this data since they are obtained by ignoring the correlation
induced by the sampling scheme. The confidence intervals presented in Tables 3.34

through 3.36 should thus be treated with caution. The estimated variance of the
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coefficient of variation is .0367426. Based upon the simulation which we conducted
in section 3.6.3, the true variance may be from 3 times larger, if we assume normally
distributed error terms. to 20 times larger if we assume even a moderate degree of
skewness and kurtosis! That would imply a confidence interval for the CV of either
(1.1874,2.4888) or (the more likely scenario given that the income distribution does
exhibit skewness and kurtosis), a confidence interval of (0,3.5183). Inference from
these two different estimates of the variance will provide quite different answers than
using the confidence intervals reported in the tables.

As Deaton (1997) shows, correlation coefficients between .4 and .6 are not at all
uncommon in cross-sectional data from developing countries, implying an even greater
design effect in many income surveys.

As in the mean case, failure to correctly specify and correct for the sampling
design leads to highly misleading estimates and inference. Estimates of inequality
measures can be biased upward or downward by 20% (or more) and standard errors for
inequality measures will be many times too small in most cases. The above example
from Mexico combined with the simulation suggests that confidence intervals need to
be increased 300% to correctly conduct hypothesis tests in this case! In general, the

estimated asymptotic confidence intervals for inequality measures may be even more

misleading as clustering increases.
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Table 3.34
Inequality in Mexico:
(a) Household Income

lower 95% bound Estimate lower 95% bound

Ccv 1.2233 1.3861 1.5488
Cv, 1.2631 1.4242 1.5853
change 2.75%

I(1) 0.4077 0.4436 0.4794
(1) 0.4200 0.4568 0.4936
change 2.99%

A(Q2) 0.5139 0.5261 0.5384
An(2) 0.5177 0.5301 0.5425
change 0.75%

(b) Per-capita Household Income

lower 95% bound Estimate lower 95% bound
Ccv 1.4625 1.8420 2.2215
CV. 1.4623 1.8381 2.2138
change -0.21%
I(1) 0.5156 0.5796 0.6435
I«(1) 0.5347 0.5964 0.6580
change 2.89%
AQ2) 0.5755 0.5894 0.6034
An(2) 0.5852 0.5986 0.6120
change 1.55%
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Table 3.35
Inequality in Mexico:
Household Income (Equivalent Scales = .8)

lower 95% bound Estimate lower 95% bound

Ccv 1.3060 1.6622 2.0184
Cv, 1.3445 1.7177 2.0910
change 3.34%

I(1) 0.4621 0.5177 0.5732
(1) 0.4832 0.5414 0.5995
change 4.57%

AQ2) 0.5455 0.5590 0.5724
An(2) 0.5562 0.5696 0.5830
change 1.91%

Household size is corrected using equivalent scale of .8 for all members of the household
after first two. (e.g., a household with 4 people is treated as 3.6 people.)

Household Income (Equivalent Scales = .6)

lower 95% bound Estimate lower 95% bound

Ccv 1.2858 1.5936 1.9013
CV,. 1.3228 1.6437 1.9646
change 3.14%

I(1) 0.4461 0.4970 0.5478
(1) 0.4663 0.5192 0.5721
change 4.48%

A(2) 0.5318 0.5451 0.5583
A(2) 0.5419 0.5551 0.5682
change 1.83%

Household size is corrected using equivalent scale of .6 for all members of the household
after first two. (e.g., a household with 4 people is treated as 3.2 people.)
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Table 3.36
Inequality in Mexico:
Individual Income

lower 95% bound Estimate lower 95% bound
Cv 1.2700 1.6852 2.1003
CV, 1.3109 1.7341 2.1573
change 2.91%
I(1) 0.4722 0.5295 0.5867
(1) 0.4982 0.5563 0.6145
change 5.07%
AQ2) 0.5522 0.5657 0.5792
An(2) 0.5609 0.5743 0.5876
change 1.51%
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3.8 Conclusion

The measurement and estimation of inequality is an important task for economists
and one which has widespread usefulness as a tool of policy evaluation and analysis.
Much attention has been paid in the literature to deriving inequality measures which
obey axioms corresponding to our intuitive understanding of inequality. This is an
important exercise and one which has been widely undertaken.

Another important exercise, and one which has quite unfortunately been almost
totally ignored, is the calculation of standard errors and confidence intervals for in-
equality measures. Since most inequality research involves comparisons over time or
across regions, statistical testing of changes and their significance would seem to be
of utmost importance. Furthermore, since most surveys of income and expenditure
follow the stratified and clustered models outlined in this paper, it seems obvious that
estimation and inference should be conducted on inequality measures taking into ac-
count the structure of the survey sample. This is something which the literature has
ignored quite completely.

Intuitively, results from the mean case regarding bias under stratification and mis-
leadingly small standard errors under clustering should apply in the case of inequality
measurement. In this section, we have shown that that intuition is quite correct. In-

equality indices will be biased if stratification is ignored. Standard errors must be
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corrected if proper inference is to be conducted. In this section, we have shown how
to do both. We have derived a design effect for the coefficient of variation which
can be estimated quite easily from sample values, something previously unavailable
in the literature. Through simulation we have shown the potential of the introduced
methods to correct problems arriving from survey data.

We have also provided some previously unknown results about small-sample bias in
inequality measurement and linked the shape of the income distribution (spedifically
the skewness and kurtosis) to both the bias in small samples and the design effect
for estimating unbiased variances in the case of clustered sampling. These results
are particularly important given the high degree of non-normality usually found in

income and expenditure data.
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4 NON-PARAMETRIC DENSITY ESTIMATION

The problem of estimating the density of a random variable given a sample of data
has long been of interest to economists. When examining variables such as income
distribution, density estimation allows the comparison of distributions across regions
and over time. Density estimation can also be a useful descriptive tool to give a visual
picture of data. Other applications include mapping the distribution of environmental
variables like river flow or rainfall, or applications in medical and health-related areas
such as treatment lengths hospital stay. For an example applied to the changing
distribution of country incomes, see Jones (1997).

Traditionally, density estimation involved the specification of a particular func-
tional form combined with estimates of parameters through maximum likelihood or
some other method. For example, if an underlying distribution is known to be nor-
mal, it suffices to estimate the mean and standard deviation by usual methods to
fully characterize the density. Log-normal, exponential, Pareto, and Gamma distri-
butions have all been used as parametric specifications for examining the distribution
of income. As Kakwani (1980) and others have shown, such parameterizations may
match one particular distribution of income at a given time, but no single known
distribution can characterize all income distributions or even the distribution from

one country over time.
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The other great drawback of parametric methods is that they require knowledge of
the true, underlying density. This is rarely, if ever, known. In examining income dis-
tribution changes over time, different parametric densities may show different changes
in distribution, thus making analysis sensitive to the parametrization chosen. Inaccu-
rate specification of the distribution can also lead to very misleading results for index
inequality measurement or stochastic dominance testing.

Non-parametric density estimation, on the other hand, allows for estimation of
univariate and multi-variate densities without the imposition of particular distribu-
tional forms. The histogram is a popular non-parametric method of analyzing densi-
ties. However, it is not a smooth representation of data (which in addition to being
aesthetically desirable is important when representing continuous distributions) and
its many other mathematical disadvantages have lead to an extensive literature on
smoothed, non-parametric estimates of density beginning with the important con-
tributions of Rosenblatt (1956) and Parzen (1962). For excellent summaries of the
non-parametric literature and subsequent developments, see Silverman (1986), Hardle
(1990), Pagan and Ullah (1997).

Many different smoothing methods have been considered in the non-parametric
literature. Perhaps the most commonly-used is the kernel method of estimating den-

sity non-parametrically. To understand how the kernel method works, consider first
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a simple histogram constructed from a sample of data of size n
Yi i=1...,n (189)

We first choose some binwidth, A, and then construct bins from 0 to A. from A to 2h.

etc. The histogram density estimate of the density in the range 0 — A is then

n

where 7(y;) is an indicator function which returns value one when y; falls within the
0—h range and zero otherwise. As mentioned above, this technique for estimating the
density has several problems, including discontinuity. Different choices of binwidth
can produce dramatically different looking distributions. Also, despite the existence
of certain rules of thumb, there is no agreed upon method to choose the number of
binwidths or starting and ending points.

One generalization of the histogram method is the naive non-parametric estimator
or the local histogram. Instead of creating binwidths to span the entire population.
we can think of drawing a local histogram at every point of the data. Again, we
will need to pick some range, . We will count the number of observations from the
sample which fall within 2 of the point at which we are estimating the density. If we

think of the density at y as being,

f(y) =lim ~

lim —Ply—h<Y <y+h). (191)

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



then we can estimate f(y) by picking a small value for h and estimating

- n -Y;
frn) = 3 35 (55) (192)

i=1

where A (-) is a weight function (or indicator function)

when Y; falls in [y —h,y + h]

D | -t

0 otherwise.

and the subscript N stands for "naive” estimate of f(y). When n becomes very large,
the window with, A, should become very small. In that case. this will approach the
true density of the variable under consideration.

This naive non-parametric density will give a smoother representation of the data
than the histogram, but it still suffers from several problems. First, there is no easy
way to choose h except for the rule that it should decrease as n increases. Secondly,
since the indicator function is not continuous, the estimate of the density of y will
not be continuous. If we are interested in estimating derivatives of f (y) for example,
we will not be able to do it using this naive estimator. Thirdly, the graph of the
density which may be created using (192) will be rough and may demonstrate spurious
variation.

Kernel density estimation is a smooth analog of (192). We replace the indicator
function in (192) with a smooth function, called a kernel, which gives small values

when the sample value y; is far from the y for which we are estimating the density.
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When y; is far from the y it will give larger values. A common choice for kernel is the

normal kernel

K(_y_—hi) - \/}2_"6—%(";:‘) (193)

which meets this criteria. Since A (-) is now smooth, we are able to calculate deriva-
tives from this estimate of the density. We can also calculate optimal choices for the
kernel and for the window width. To see the improvement in the ”picture” of the
data created by using the smoother method, see Figure 4.0, where we compare the

histogram, the local histogram and the kernel-smoothed density estimates.
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Figure 4.1
Comparison of Three Nonparametric Methods
(a) Histogram
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The histogram fails to pick up the fact that this data set is not monotonically
decreasing. It also gives a discontinuous picture of the data. In the second part of
the graph, we see that the naive/local histogram approach is continuous, but is filled
with jagged bumps. Also, it is hard to tell whether the apparent increase in the
density around y = 6 is significant or not. In the bottom part of the graph, we see
the smoothed kernel estimate of the density. It is clearly superior aesthetically to the
naive/local histogram picture.

The technique of non-parametric density estimation using kernel methods for data
which is independently and identically distributed (i.i.d.) is well-developed. Again.
Silverman (1986), Hardle (1990) and Pagan and Ullah (1997) provide extensive cov-
erage of this literature. This literature has always assumed (usually implicitly) that
the sample data in question has been gathered as a random sample with replace-
ment (RSWR). There has not been any work on density estimation from the kind of
stratified and clustered samples which we have seen are quite common in economic
analysis. It is also not clear generally how these results are affected when the i.i.d.
assumption is violated in other ways, although some work has examined density es-
timation under weakly dependent time series observations. (See, for example, Hall,
Lahiri, and Polzehl (1995) and Herrmann, Gasser, and Kneip (1992).) In this section,
we will consider the problems which arise from estimating density from stratified and
clustered samples using kernel methods.

In particular, we will consider three deviations from the assumption of indepen-
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dently and identically distributed data and simple random sampling with replacement.
In section 4.1, we discuss the implications for density estimation of random sampling
without replacement (RSWOR) from a finite population. In section 4.2. we consider
kernel density estimation from ctratified samples with both equal and unequal proba-
bility sampling. We will develop the technique of weighted. kernel density estimation
to correct for the unequal probability sampling found in most surveys. In section
4.3, we consider a particular deviation from the i.i.d. case-specifically that of non-
independence of the data created by clustering of the form frequently found in survey
data. For both the case of stratification and the case of clustering, we will consider
the problem of choosing the window width, h. Usual techniques for choosing A in
the i.i.d./simple random sampling case will no longer give an optimal choice of win-
dow width. Below we provide data-based methods for choosing h for both stratified
and clustered data. We conclude by indicating how these results may be unified for

surveys which combine stratification and clustering.
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4.1 Finite Population/Random Sampling Without Replace-
ment

Consider a finite population of size N for some economic variable Y, with population
mean p, population variance 6%, and probability density f. This will provide a

population model like (1) above.
Yi=p+U;,i=1.,N (194)

where the population parameters 1 and o2 are defined by

p= 5 Y, = 5 & W - p)? (195)
For finite N, f(Y’) is often defined as
N =
F(Y) = i [yi=Y) (196)

N
where /(-) is an indicator function giving value 1 when the statement is true and 0
when false. In some cases, particularly when N is large, it may be more useful to

define the probability density function of ¥ as

Fal) = ;Mﬁ%% S K (197)
where R; = h' K (%=X). In this case, we write f(Y) with the subscript A to denote
the dependence of f(Y") on the choice of h. f,(Y') is a transformation of the discontin-
uous, finite probability distribution f(Y') into a continuous distribution. Ay acts as a
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smoothing parameter, and as denoted by the subscript N, choice of h should depend
upon the size of the finite population. Spedifically, A should be inversely related to N.
Usual methods for choosing 4 in the case of density estimation, such as minimizing
the integrated mean squared error, will not apply in this case, as f (Y") simply defines
a continuous version of f(Y). Different A provide different continuous variations on
f(Y). In practice, h = cn~5 with ¢ = 1.060 or ¢ = .79R (where R is the inter-quartile
range), may work well. !5

Now consider a sample of size n drawn without replacement from the finite popu-
lation, f. (Referred to in the statistics literature as a simple random sample (SRS).)
We can write the sample elements as y; i = 1,...,n. Letd;, i = 1,.... N be the dummy
random variables such that d; = 1 if Y; is selected in the sample and d; = 0 otherwise.
Note that the d;’s are not independent and the Ed? = n/N and Edf d? = g for
any p > 0, ¢ > 0. Further, we can write the probability of inclusion of any element
in the sample as m;. For SRS, m; = m = ~- In the case of Rosenblatt’s (1956) kernel

estimator, based on y;, is then

n

fy) ==k

n =

1 N
x ; d; K (198)

where k; = h!' K(4=%) and A = n/N.

18Silverman (1986) demonstrates the optimality of this choice of ¢ for the problem of density es-
timation of an infinite population when the sample is drawn with replacement. This concept of
optimality is not relevant here. These choices are simply suggested as giving an agreeable amount
of smoothness.
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The finite population density estimation problem reduces to the problem of es-
timating the population mean discussed in section 2. Provided that h,, satisfies

ling[ hn = hx, it therefore follows from the results there that

Ef(y) — fal¥) (199)
VW) = -8

where S§ = (N —1)~' £V (A; — K)?. However, if we treat the finite population Y;, 7 =
I,..., N itself as an i.i.d. random observation from an infinite (super) population with

density f* then as (n, N) — oo such that A — ¢ > 0,

Efw) = (VN7 NE)ES KB (200)
N N
— 5
and
(nh) 2 V(£(y) — £ [ K*(v)dw. (201)

The details of (51) and (52) can be worked out by following Rosenblatt ( 1956) and

Pagan and Ullah (1997).
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4.2 Stratified Sampling

Now let us consider density estimation for data chosen under stratified sampling.

Consider the following population model,
Yy, i=1,...M j=1 .. .N. (202)

The total number of ¢lements in the population is 3" N; = N and the proportion of
elements in each stratum, z, is §; = I—A\r,* Within each stratum the data are character-
ized by some distribution, g;, with mean y; and variance o2. We will only restrict the
strata densities by the requirement that the first two moments exist and are finite for
each stratum. We will consider the case where each stratum is an i.i.d. draw from
some super-population g;.

Now consider a sample, where n; elements are drawn from each stratum (i.e. a
stratified sample). The total sample size is 3" n; = n. The n; may or may not be
equal Since both the n; and the 8; may vary, the sample inclusion probabilities are
no longer equal for all elements in the sample. They will however, be equal for all
elements in the same stratum. We will have the probability that the J-th element in
the i-th stratum is included in the sample: m;; = m; = %‘;: .

The parameter of interest is the overall distribution of data in the population,
fY)=> 6. (203)
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The usual Rosenblatt Kernel estimator for the density at a point y is

fw) = EK (%5 NM" Z di K, (204)

where h is the window width which is assumed to satisfy
(A1) [ h—0
(i1) nh — oo
as n — oc.
for sample of size n, and the kernel K™ (-) is a symmetric function which satisfies:
(A2) (i) fA(v)dy =1
(i) foK (y)dy =0
(iii) fv*R(¢)dy = v < oc
We can re-write (204) as
M
fl) = S5 K (WY) > way) (205)
i=1 j=1 =1
where g;(y) is the estimate of the density for stratum i at the point y. This estimate
of the population density, f(y), is thus a sample-weighted average of the density
estimates for each stratum. It is then clear that the density estimate, f(y), will only

be asymptotically unbiased for (203) when

(2)

2|
2|3

or

(3i) g Vi.

I
Q
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These are the same conditions required for unbiased estimation of the mean model
from (45) above. These conditions are unlikely to be met in most surveys. It is a
common feature of surveys that sampling is disproportionate, violating condition (i).
Even when the original survey design is such that the sample inclusion probabilities
are equal in all strata, varying rates of non-response and other factors usually force
us to re-weight the sample to make it representative. This re-weighting will have
the same effect on estimation as having an initial sample design that incorporates
unequal probability sampling. Unequal probability sampling is often a desired trait
when particular populations of interest are sampled more heavily relative to the rest of
the population (SIPP of the US Census, for example) or when cost restricts sampling.
(ie. the case of LSMS data from the World Bank where lower cost of sampling in
urban areas leads to higher sampling proportions in these areas.) Though we are
interested in an overall estimate of the density, it is problematic to assume that
variables of interest will be identically distributed in different strata. Ignoring either
this dis-proportionality in the survey design or the differences between strata will
lead to biased estimation, even in the simple case of non-parametric kernel density
estimation.

The solution is a weighted estimator

3 _ 1 L& -(Y%i Y
folt) = rrm 23 vk (M) (206)

where w,-ar—“&. Again, we set the weights proportional to the inverse of the selection
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probabilities. If we further require that 5" w; = 1, then w; = FA::.' Then
A M AL M
foly) =3 58:() = 3" 0.G:(v) (207)
=1 =1

This takes care of the problem of asymptotic bias. However this is still not unbiased
for (203) since gi(y) is not unbiased for g;. This bias will depend upon the choice of

window width, ~. We can write
) M
fuly) = _ 6ilg; + bias;) (208)
i=l1

and
M

bias (fw (y)) = Zeibz'as,-

=1
where the typical bias term upto O(h%) will be

h2
bz'a.s,- = ?gg")’z. (209)

Assuming that the sampling is independent between strata (which is usually the case),

we can also write
Var (fuly)) = 8}var (§1) + 83var (G2) + .. + 6% var (Gur) (210)

and upto O(})
R 1 2 M 92
Var (fulw)) = 7 | [ (Kw))*au] S (211)
Silverman (1986) provides details of the non-stratified case for sampling with
replacement. If we consider each stratum as such a sample, it is then straightforward

to work out (208) through (211).
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Proposition 4.1: If the densities of strata 1 through M are given as g, through

gum, the population density f(y) is estimated using a kernel density satisfying (A2),
and a stratified sample of data is drawn independently in each stratum. then the

window width which minimizes the mean-squared error of f (y) will be

rem () ([ o] ) (52)' (f S ) e

Proof: using (208) through (211) write IMSE (fu(y)) = Var (fa (y))+(bias ( f;,(y)))2

and minimize with respect to A.

Corollary 4.1: If g; through g,, are normally distributed with mean Ky and

variance 0%, and the density is estimated using a standard normal kernel. then the
optimal window width (in the mean squared error sense) will be

M 2 % .
he = 0.87 (Z %) (A1 + Ag) 4 (213)

=1

where )\ is a weighted sum of stratum-specific standard deviations
3 M
’\l =2 Z 92 —5

and ); is a weighted sum of a function of the distance between stratum means

Gl

(6} +af)” 5{ o i — )’ (#i—m)“} (B
§§”’ VoI G C = T
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Proof: For the case of a standard normal kernel 42 = 1 and [ (A (v))dy = ﬁ;.
We can write
MM

/[Ze (¢”) J dy—/ZGz ) dy + /229,9 (g")

i=1 =1 I

o

A?]-4( ”—'fﬁ)z
and for normal densities replace g with ﬁ; [1 - ( 3’—_-&*) J e *\ ¢/ _Then the first
term, { M. 0:(g"”)?, becomes tvsﬂ- M 0:7°6%. The second term can be calculated
by integrating the product of g7 and gj- Using these results, calculate A, and A; and
replace in the formula for h,. This proves Corollary 4.1.
We note that the optimal window width is inversely proportional to a weighted
sum of the strata sample sizes, n;. In the case where n; = 3 and 6; = ﬁ then
M f: = n and the window width will be proportional to n=% as in the non-stratified
case, but the proportionality constant will differ from the usual 1.065. When strata
share common means and variances, and the population and sample proportions are
equal in all strata, this result collapses to the usual optimal window width for normal
density: h*=1.060n"5. Note that however if o; = o for all strata, that the population
standard deviation may still differ from o and A, #1.060n"%.
When strata share common means and variances, hga = 1.060 (z:j‘;l ?E) d . Recall
that the covariance between strata within sample is zero, thus even in the case of
homogeneous populations in all strata, the variance of the density estimate is less

than in the non-stratified case and the optimal window width is likewise different.
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This mimics the case of estimation of the mean under stratified sampling, where even
when all strata have identical means, a stratified sample reduces the variance of the
estimator, 7.

In practice we can replace ; with some consistent estimator like \/;? and u; with
its estimate, 7.

In figure 4.1, we consider the effects on the window width when there are two
strata, each distributed normally, with samples selected with proportional sampling.
In figure 1.1a, we can see that as the difference between strata means increases.
h* grows without bound. hg on the other hand, increases for a period, but then
decreases. Intuitively, the optimal estimator, A, increases when the combined strata
are unimodal, but once the means are far enough apart for the density to exhibit
bi-modality, hs begins to decrease. The effect of this is that the density estimation
is essentially being conducted separately on each stratum, the small window width
giving pear zero weight to comparisons between elements in different strata. Figure
4.1b provides the same illustration for strata with identical means, but increasingly
different standard deviations. Again, A, is not going to grow without bound because
it takes into account the fact that the increasing sample variation is the result of two

strata with two different underlying distributions.
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Figure 4.2a
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4.2.1 Simulation study: stratified sampling

In a simulation study we consider the proposed optimal window width, Ay versus

h* = 1.060n7% and h, = .9 + MIN (o, {ier—quarticrange) , }a5 heen shown to be
superior to A" for mixtures of normals and bimodal densities, see Silverman (1986).
For clarity, we consider sampling from two strata, where the population in each strata
is equal and the underlying densities are normal with mean y; and standard deviation
;. For the simulation, we fix n; = 1000, x; =0 and oy = 1 while varying the sample
size, the mean, and the standard deviation of stratum 2 only. Proportional sampling
thus implies :_:f = 1, otherwise the sampling is disproportionate.

For proportional sampling, we consider the benchmark case when there is no
difference in mean or standard deviation between the two strata. We then consider
how estimation changes using the proposed hy as the difference between the two
strata means increases, as the difference between the standard deviations increases.
and as both change. We then consider the same cases for disproportionate sampling.

We conduct 1000 repetitions for each case. Each repetition involves drawing a
sample from the two strata, estimating the three candidate window widths (h*, h,,
and hg) based upon the formulas given above (with o replaced by s, and u replaced
by 7), and estimating the non-parametric density at 200 points. The figures give

the average estimate of the density over the 1000 repetitions. Table 4.1 presents
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the average calculated window widths and the various combinations which have been
considered in the simulation exercise.

We first consider the case of proportional sampling (n; = n; = 1000) when both
strata have mean zero and variance one. As can be seen in figure 1.2 and from
the corresponding row in Table 4.1, the average hg is the same as the average h*
and the two average density estimates are identical. This is as expected given the
discussion above. In this case, the stratification is spurious since the two strata are
exactly identical. Note that in practice, however, the density estimate using h* will be
superior to that using hy since calculation of h, involves computing two strata means
and two strata standard deviations instead of one total sample standard deviation
The estimation of four quantities instead of one introduces more variability into the
estimate of hy than A*.

In figures 4.3 and 1.4, we compare density estimation when both strata have
standard deviation equal to one, but have different means. (This gives a population
which is a mixture of normals.) When the difference in strata means is such that the
overall population density remains unimodal (Figure 4.3), A, performs better than
either A* or h,. The integrated mean squared error using hg is 27% less than that
using h*. (See Figure 4.11 and Table 1.2 below.) Figure 4.3 presents the average
density estimates for the three candidate window widths.

The improvement provided by using h,; as opposed to A* or h, is dramatic when

the difference between the strata means grows and the overall density becomes bi-
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modal. As can be seen in Figure 4.4, A* tends to oversmooth the peaks. h, gives
improved performance and reduces this over-smoothing, but A can be seen to match
the peaks even better than either A* or A,.

When means between strata are equal, but variances differ, the same results holds.
ha improves performance over h*, but h, matches the density better than either.
This case is considered in Figure 1.5. Figure 1.6 presents the density estimates when
both strata means and strata deviations differ. but sampling is proportional. Using
heg provides a much better match of the true underlying density, since it takes into
account the different strata-specific distributions.

As noted above, proportional sampling will tend to be the exception in most cross-
sectional data sets used by economists. The proposed optimal window width, hg
combined with the weighted density estimator of (206), proves to be a verv powerful
tool for non-proportional sampling. This is examined in the remaining figures.

When the sampling is not proportionate and the strata differ in either means or
variances, the unweighted estimator will be biased as discussed above. This is clear
from Figures 4.7 and 4.8 where we compare density estimation for two strata with
equal standard deviations but different means. In both cases, the weighted estimator
using hg clearly outperforms unweighted estimation with any window width. Here
stratum 2 is sampled twice as intensively as stratum 1, thus the elements from stratum
2 receive a weight that is half that of elements in stratum 1. This is not a particularly

large difference in weights. In many cases, the sampling disproportion is greater than
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10 between certain strata, so the results from ignoring the weighting in this case will
be even more dramatic with even larger resulting bias.

Figures 1.9 and 4.10 illustrate the case of equal strata means and different vari-
ances and the case of variation between strata of both means and standard deviations.
Again, the same results hold. Large bias is incurred by ignoring the structure of the
sampling.

In Table 4.2, we have calculated the approximate (upto O(;;)) IMSE using hg
and h* with a standard normal kernel and we compare the ratio of these two as a
measure of the efficiency loss of using h*. The top half of the table compares the loss
of efficiency for two strata with equal standard deviations as the difference between
strata means increases. In the bottom half of the table, the means are held constant
while strata standard deviations vary. The results from the table are presented in a
more user-friendly format in Figures 4.11 and 4.12.

As can be seen in Figure 1.11, for the case of proportional sampling, when the
difference between means is greater than 2, using h* results in very large efficiency
losses compared to using hg. This corresponds to the simulation results presented in
Figures 4.3 and 4.4. Comparing Figure 4.12 with Figure 4.11, we see that for the case
of dis-proportionate sampling, the relative loss of IMSE is not much different than
in the case of proportional sampling. Recall from the simulation, however, that the
bias is much greater using h*. Since the efficiency measure considered here includes

integrated bias, it is perhaps not a good measure of the pointwise bias from using h*.
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However, it is quite clear from the figures presented in the simulation exercise that
this pointwise bias will be unacceptably large.

In the next section, we consider the effect of clustering on non-parametric density
estimation. Some of the same issues which were raised in this section will arise there
the usual optimal window width A* will no longer give best results. However. we will
also have to contend with the correlation which is induced in the sample through the

method of cluster sampling. It is to that issue that we now turn.
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Figure 4.3a
Unweighted Estimate using h*
Proportionai Sampling
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Unweighted Estimate Using N,
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Figure 4.4a
Jnweighted Estimate Using h”
Proportional Sampling
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Figure 4.Sa
Unweighted Estimate Using h*
Propartional Sampling

@
N ~
Q
<
“! -
e - — [Estmated density -
——— True density
(=)
(\! - — —_
Q
\
2t \ /
o / \\.~ / Y
/ \
N / - \
[=] / \
/ \
3t i \
o 7
(/
<
Qt
(=]
8 = i i
F-a -2 0 2 4 6 8
Figurse 4.Sb
Unweightad Estimats Using he
Propartional Sampling
@
N
Q
<
N )
° — — Estmatsd density |
——— True density
o —_ |
l\! - — —
o - -
\ .
o , \ / \
al P \ ’ \
o / e \
° / \
/ \
2l / \
Q / \
A
< V A\
g i ’// \\‘ h
5/ hY
P N
8 — - A i i \\\\4\‘
C-a -2 o 2 a 6 8

Mixture of N(0,1) and N(3,1)

203

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



Y (00}
i f
I~(.0
B -~
_C B ./'// 1 g
o -
o c =
» a |
03% J=
0 ¢ I ©
< + > -
(06 ~ P
8~§C [~ IR
>Hh O =2
D w P =
LL_OS— ] @}
@
£ 0 -7 4
c ¢ I
O o +
5 I X
3 19 =
l‘é T
3 ' [72] T~
g \‘\
= ~-
UU)
8 &
o ©
| gm —.cl\l
B 2
(v
S
L A
Lo {
Col
<t
i ] ] ] |

80 %<0 020 9l'C 210 800 ¥00 000

204

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



cigure 4.6a
Jnweighted Estimate Using h*
Proportional Sampling

@®
N
Q
<
N b i
e © — ~ Estimated densrty
—— True density

Q /
(\! -
o / \

/ \
- / \
o / \

/ \
_“_‘ | o
Q
@
q -
o
<
2r ~~
[=] - -~
\\
o e ——
=] ; L
©-4 -2 0 2 4 6 8
Figure 4.6b
Unweightad Estimate Using ng
Propartionai Sampiing
@
N
Qo
< .
RS .
e i \ — ~ Estumatsd densrty
’ \ ——— True density

Q ; \
b /
o \

/ \

/ \

0.12 0.16
T T
\\‘\

—
P
-

0.08
N
.
e

.

0.00
.

- -2 (] 2 4 6 8
Mixture of N(G,1) and N(0,9)

205

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



n "1 ©
B\ 'I
®
S I
| T g2 :
-D(I)
‘(DC‘ /
BT | /
| E o |
2 B2 / o~
o Cow e / 13 O
o 2 / S
C = / =
ao— | /
o> E | / 2
© ¢ 8 / ©
< B =
8.58 - )
+£ 0 =
3 =2 =2
Cﬂmt’ - Y
- —
L.I.._D8 | //// O
[1D) -
38 a
L I
oa g4
[0} i X
=2 19 =
- \~\\ -
\\;
B 1 o
)

\
Ny

80 ¥20 020 90 20 800 ¥00 000

206

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



Figure 4.7a
Unweighted Estimate Using h”
Prooortionai Sampling
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Figure 4.7b
Unweighted Estimate Using ng
Proportionai Sampling
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Figure 4.88
Jnweighted Estimate Using h”
Non-Proportional Sampling n2/n1=2
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figure 4.9a
Unweighted Estimate Using h”
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Figure 4.9b
Unweighted Estimate Using ng
Non-Praportional Sampling n2/n=2
[+ ]
N v
[=]
<
N
e — — Estmatad densrty
' ——— True denstty '
[=]
l\[_ - —_ —
(=]
-]
2t
ol - _ —
o
3t !
o P
<
°, -
Q
8. - , R M
O.s -2 0 2 4 6 8

Mixture of N(0,1) and N(3,1)

211

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissiony\w\w.manaraa.com



(L'EIN Pue (L'0JN JO aunyxipy
g ¥ 2 0 2-

T - v T T T

Aysuep end| .

Ajlsusp pejewnsy - — -

L | L

2=lu/2u Bundwes jeuoiyuodoud-uop
Iy Buisn sjewins3 pejybiem
96'v aJnbi4

800 v00O 000

cl’o

Sl1'0

820 V20 020

212

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



Figure 4.108
Unweighted Estimate uUsing h”
Non-Proportional Sampling n2/nl=2
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Figure 4.11a
Unweighted Estimate Using h”
Non-Proportional Sampling n2/n1=2
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Figure 4.12q
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Figure 4. 13a
Ratia at Integrated Mean Squared Error
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4.3 Clustered Sampling

Much of the data used for economic analysis is gathered using survey methods leading
to sample data which may violate the i.i.d. assumption. Serial correlation of data
is a well-known problem in time-series data, but it is also present in much cross-
sectional data, where it is usually ignored by analysts. Most cross-sectional data
for economic analysis is gathered through some type of complex survey (see Ullah
and Breunig (1998)). Data is usually selected from populations which are stratified
and clustered using well-known survey sampling techniques. Clustering, frequently
employed to reduce the cost of data collection, generally leads to positive correlation
between data points in the same cluster. Much applied cross-sectional, econometric
analysis ignores the correlation which is present in such data. In particular, for the
case of non-parametric density estimation, such effects from the sampling structure
have not been considered in the literature.

Below, we relax the assumption of independently distributed data and consider
the problem of kernel density estimation for clustered data. As mentioned above,
the choice of window width for kernel density estimation with i.i.d. data has been
copsidered by many authors. Silverman (1986) provides an excellent review.

In this section, we obtain the approximate integrated mean squared error (IMSE)

for the kernel density estimation under cluster sampling. An optimal window width
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is proposed which minimizes the approximate IMSE. This result suggests that the
usual optimal window width for i.i.d. data does not hold in the case of clustered
data. The combination of a fourth-order kernel and a window width which depends
on the degree of correlation in the data turns out to perform well in application and
the suggested optimal window width performs better in an integrated mean-squared
error sense.

The population model which we have in mind is the same as in (59) above

where 75" Ui = 0 by definition of un.. We will confine our analysis to a single
stratum for simplicity, so we can write the population model for one stratum as
= pu+ac+ e
Consider the case of clustered data, where a sample of n units has been drawn
from this population using cluster sampling. It is assumed that the data is drawn in

two stages; a sample of k ”clusters” is randomly chosen at the first stage; and in the

second stage a sample of n, elements is chosen from each cluster, c=1,....k. The

16Clustering is frequently found in economic data gathered from surveys. One common example
is the income and expenditure survey, where first a sample of villages is chosen and then. within
each village, households are randomly selected. Households within the same village (or ciuster) can
be assumed to face similar conditions—for example we expect heating fuel costs to be correlated for
households in the same area. In this paper, | assume that the data has already been gathered and
that the analyst has information about the structure of the data. Kish (1965) and Thomspon (1992)
provide details of how clustered surveys are conducted.

222
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total sample size is thus n =Y n.. The sample model is

Yei = { + Uci, c=1..,Ci=1,..,n.. (216)

n

For simplicity, I assume that in the second stage, n. = % = m elements are chosen
from each cluster. Also known as "balanced” clusters, this assumption will be relaxed
below. We will assume that the sample is drawn as a random sample with replacement

such that

Eu; = 0, Euzi=0'3, Euciucj=p0'2$i#j (217)

Eusus; = 0, c#c;

p > 0 is called the intra-cluster correlation coefficient. (217) implies that the elements
within clusters are correlated, but are uncorrelated across clusters!”

The problem of non-parametrically estimating the density for the case of i.i.d.
data is well-studied. (See Silverman (1986), Hardle (1990), Pagan and Ullah (1997)).
Choosing the optimal window width, A*, by minimizing the approximate integrated
mean squared error (AMISE) of the density estimator provides h* a n~% when a
second-order kernel is used. (Generally, A* = cn~ @0 for a Pth order kernel.)
Furthermore, if the underlying true density of the data is normal with variance o?

and if the kernel is Gaussian, then the optimal (in the sense of minimizing the AIMSE)

17The intra-cluster correlation coefficient. p, can be surprisingly large in cross-sectional data. Deaton
(1996) provides examples using World Bank data where intra-cluster correlation coefficients range
from .2 to .5.
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window width is

h* = 1.060n75. (218)

(See Silverman (1986).)

I will examine how the result changes if the data follows (217) above. Specifically.
I will use the same method of minimizing the approximate integrated mean squared
error with respect to A, and solving for the optimal window width.

The non-parametric, kernel estimate of the density at any point y is
. 1 & (Y y) o
_ 27 219
fly) = — j§=l: K ( 3 (219)

where h is the window width which is assumed to satisfy (A1) from section 4.2, n is
the sample size, and the kernel X (-) is a symmetric function which satisfies:

(i) [¥*K(¢)d = pz < oo

(ii) Jv*R(v)dy = py <
in addition to satisfying (A2) from section 4.2.

For the case of clustered data, we can re-write the Kernel density estimate as

fly) = n—lh Zi K (yd = y) (220)

c=li=l1
where n, is the number of observations in the cth cluster. For the derivation which

follows, we have assumed n. = % = m. It is straightforward to show that the bias of

——

f(y) upto O (h?) is

— 2
bias f(y) = 51" (W) (221)

224
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(see Silverman (1986), p. 39).

To find the variance of f,(‘?;) under the assumptions about the data (217). we first

re-write f@) as

fly) == ZZ We (222)
c=lt=l
where
W, = -,I;K (y“'h_y) . (223)
Then,
1 k ne k ny
Var(f(y)) = 5 ZZ Var(We:) Z}:Z Z Cov(Wei, Wey).  (224)
e=li=1 c=ld=l1j=1
kg for ‘ac’

Var(W,;) = EW2X — (EW,)®. and since the data are identically distributed.
Var(We;) = Var(Wy,). Using this information and the assumption that elements

across clusters are uncorrelated

Var(FW) = 2BWh - LEWul + (3 ~ D) EWu- W), (225)

First, consider term 1:
L4 — 2 » N
RE(Wu)? = ylxyf (%A ( R )) flynddyn = 35 f, B2 (0n1) f (hwn + y) dwn,.
11
Expanding f(y;;) around the point y;; = y by the method of Taylor’s series,
1 1 .
—E(Wn)* = —/ K? (yn1) [f(y) + fWhvu + @) (hvn)? + - ] dyn.-
n nh Jyy,

Keeping terms up to O ( nlh) gives an approximation for the first term of Var( f/(;)),

%E(Wn) _E B (wu) f@)dwn. (226)

225
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Now, consider term two:

2

%(Ewu)z = i_ {%/y“ % (ynh )f(yn)dyx,}z - % {/w" R (w11) f(hon +y)dwn} .

Here, f(yn) is replaced with a Taylor’s series expansion around the point 7, = y.

1

/%(ELV”)z = E {~/¢’u B (v”) I:f(y +fl(y)h"WII + f”( )

d

(hwu)z

" 1011 2
+f (y) (hon))® + L) (y) (hwn)* + - de”}
2
= % {f(?/) /w“ K (yu)dyn + hf'(y) /w” vk (vn) dyn + % “(y) /w" v (p) dyy,

2
h3 mn - nn d
+€f (v) vk (Wu)d?ﬂu"' f (v) wle‘- (w11) dwny
w1

1 R3f" (y)pa . B3 F" (y) s +h*f””(y)#4} .

- 2w+

2 6 24

Which gives, up to order O (h),

(f”( y)’ p

+ FWR " (y)ua

-1 { F@) + POl ) L) L )1 }

3 12
(228)

Now, consider term three:

(% - %) E(Wnle) = (— - —) / / (yu y) K (ywh ) £y, Yiz)dyndyz.

(229)
We first transform the density f(y11,y;2) following Rao (1973)
ik
flo, viz) = flyiya) | o (230)
| By duma |
| 9(¥r2) AB(¥rz) !

&}
[
(=2}
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Evaluation of the determinant in equation (230) under assumptions (217) gives A2 (1 — p?).

thus after replacing y,; with h¢; + y and y;3 with A9z + v, term three becomes

2(1 -2
(%) (% - le) /w /w K (yu) K (v11) f(hyn+y, hprz+y)dwndy; (231)

Using a bivariate Taylor series expansion of f(y11,v12) around the point y;; = y.

Y12 = Y, this term becomes

(1 —pz) % - %) /w l /w _’K (¥n) K (via) [f (v, v) + f1(y, v)hwn + fa(y, y)hors

+%f11(y, y) (hvn)® + %fzz(ya y) (h¥12)® + fra(y, y) (hyn) (hyig) + - - } dyndysz

(232)
which after simplification, and keeping only terms upto O(max {# h‘})
1 — 2 h3
= ( kp ) [f(y,y) +h fu(y, y)us + 3 i yus
ht h ,
+1—,,f1111(y, Y)pa + Ifuzz(y, ()]7H (233)

. 2f(n, Pf(u,
where fi(y1,y2) = a—f‘a”%’l, fulynye) = —(%%2327 ete. and fi2(y1,y2) = 75%%1. etc.

Proposition 4.2: If the data is characterized by (217), and f’(;) is estimated

using a kernel which satisfies (A2), then the Var( f@)) upto O(max {%, h‘}) is

——

Var(f) = o [ K (o) fw)dwn,

2+ LGB | g, +

FWR " (Y)ps +f (y)h“f’”’(y)m}
3

12

[
)
~I
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1—p? At 2 i3 B3 At ,
+H % fly,v) + Tfuzz(y, Yz + R fuly, y)us + gfm(y, y)us + anu(y,y)ml X

-

(234)

Proof: combine equations (226), (228), and (233).

The kernel density estimator will be consistent if ¥ — oc as n — >c. This is a
reasonable assumption. as it characterizes the way that sampling is done for most
economic surveys. Average cluster sizes tend to be fairly small (10-12 elements per
cluster) while increases in sample size are normally achieved by increasing k. the

number of clusters sampled.

Corollary 4.2: If the data is characterized by (217) where p = 0, then the

Var(f(y)) upto O() is

1

Var (f W)= vk Sy (vu) f(y)dyn. (235)

Proof: if the data is independent, then f(y,y) = f(y)f(v), fuaz(v,v) = f"(v)f" ).
(s y) = @), finy) = @) F(v), and fuuly,y) = F”(y)f(y) and the
second and third terms in equation (234) will cancel out.

Note that (235) is simply the variance of the kernel estimate of f(y) for the i.i.d.
case (see Silverman, p.40).

The window width which minimizes the AIMSE of f{y) in the i.id. case (218)
will no longer be optimal in the case of correlated data. If we use the method of
minimizing the approximate integrated mean squared error using equations (234) and
(221), the resulting solution will be a complex polynomial in h, which will include

228
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terms containing pz, 43, and p. (Hall et. al. (1991) consider a similar problem where
the AIMSE is also a 7th-degree polynomial in h. They provide an optimal » which
is asymptotically equivalent to the implicit minimizer of the Tth-degree polynomial.)
The solution pursued here is to choose a higher-order kernel. Higher-order ker-
nels have been used to reduce bias in kernel density estimation (see Pagan and Ullah
(1997), chapter 2, section 4.3). By choosing a fourth-order kernel, terms involving
#2 and p3 will be zero. Minimizing the approximate integrated mean squared error
will then yield a simple solution for the optimal 4 upto the order of approximation
considered. The proposed optimal A below is exactly that window width which mini-
mizes the integrated mean squared error (to the order considered) and not simply an
asymptotic equivalent.
Replace assumption (A2) with the following:
(AZ)’ (i) JR(v)dy =1
(i) SR (¥)dy =0
(iii) f4*A(v)dy =0
(iv) Jo*K (y)dy =0
(v) Jv*K(v)dy = py > 0
Here, the fourth moment of the kernel is required to be positive instead of the
usual, less restrictive assumption that p be finite. Since y, appears below in the
expression for the optimal window width (239) and is raised to a fractional power, it

must be positive in order to have a reasonable (i.e. a positive real number) window

229
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width.
We can construct a fourth-order kernel which meets assumption (A2)’ and is based
upon the standard normal kernel (K™ (¢)) by assigning a value for ;. Here we simply

set 14 = 1. The resulting kernel is

3 2 1 4 -
(2—§w +6w)ﬁ (¥). (236)

Figure 1.13 presents a graph of this kernel and the standard normal kernel.
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Now, the

Vi) = o [ & (wu)f(mdwn——{(f(y» + 57 e

(22 [ + E Ay (237)
& Yy 12 nl\Y, Yy 14| - <

The integrated mean-squared error (IMSE) is
| { tias(Fw))* + Var(£) } du. (238)

Since we are using a higher-order kernel, this bias will be of O(h?*) instead of having
the form in (221). (lmz.s(f’(—g;)))2 will thus be O(h®), and the approximate integrated

mean squared error upto O(-L.) will be equivalent to the integrated variance.
p nh q

Corollary 4.3: Given (217), and (A2)’, the optimal window width. hope Will be

=t
3

ot = | [ K’(w)dw]é[%]—?[/ ((1=#") Funlwv) - £ @)f @) dy| * . (239)

Proof: Use (237) and (238) and minimize the expression for the AIMSE with respect
to h and rearrange to solve for hgp;.

As in the ii.d. case, the optimal window width is proportional to n% and will
depend upon both the kernel and the true, underlying density of the data. Analogous
to the i.i.d. case, we consider the case where (y;,y;) is distributed as a bivariate

normal and we choose the fourth-order kernel of (236) allowing us to give an exact

o
&9
(&)

—
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value to h,,. For this special case, we have

h = [38-26;1—1_}% [ﬁ} ( /{ ¢llll(~l9~2yp) —¢"”(3) '¢(3)}dz)-Tl
(240)

where ¢ is the standard normal distribution and ¢” is the standard normal bivariate
with correlation p (see Morrison, p. 86). Rearranging, we can write the optimal
window width as

h = kon"s (241)

where

167 1%
242
[1,,8 \F] k]* (<b<p) - f) (242)
and ®(p) = [, (1—p?)@},1,(21, 22; p)dz. Unlike the case of i.i.d. data where y is

normally distributed, ~ will no longer be constant, but will depend upon both the
number of clusters, &, and the intra-cluster correlation coefficient, p.
As the cluster size increases, the window width will increase for a given size sample,

n. If we re-write (22) as

h=Ro (Q) e (243)

where
1

[ 467 ¢ _3\% |
o [ -2 -

we can see that an increase in the number of clusters (or a decrease in the average

cluster size) acts as a decrease in the "effective” sample size, ( f) .
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It can be shown that ®(p) is increasing in p and therefore x will be decreasing
in p. Intuitively, as the intra-cluster correlation coefficient increases, data will be
clustered more tightly together, and thus a finer window width will be optimal. For
the case where f(y, y) is bivariate normal with ¢ = 1 and n = 1000 Figure 4.15 shows
the effect on the optimal window width of changing p and & simultaneously. Figure
4.16 provides a cross-sectional view of Figure 4.15 for the case where n = 1000 and
k = 100. Here we can see quite clearly the effect of the optimal bandwidth constant
decreasing as the data gets packed more tightly together (i.e. as the cross-correlation
coefficient increases.) Table 4.3 gives values of % for a range of p values. Table 4.4

shows how ®(p) is increasing in p.
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Table 4.3
Optimal Constant for Window Width

under Clustered Sampling
P K

0.05 2.3561866
0.10 2.0213222
0.15 1.835119

0.20 1.7040834
0.25 1.6011561
0.30 1.5148296
0.35 1.4391234
0.40 1.3704895
0.45 1.3065959
0.50 1.2457628
0.55 1.1866615
0.60 1.1281282
0.65 1.0690206
0.70 1.0080711
0.75 0.94368371
0.80 0.87356777
0.85 0.79392504
0.90 0.69714355
0.95 0.56208067

Entries in table represent K in equation (141) for different values of 0.
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Table 4.4

Values of ®(p) and (CD( P) ——3—) for Various Values of p

8

- - 2 1
P P (2,3) (1-p%) D(p) CD(p)—i‘/_ (d)(p)——i-—)
0.00f 0.21157109 1.0000f 0.21157109 0 0
0.05| 0.24051785 0.9975] 0.23991656| 0.028345464 2.0394041
0.10 0.2753278 0.9900f 0.27257452| 0.061003424 1.7495613
0.15( 0.31762086 0.9775] 0.31047439( 0.098903297 1.5883926
0.20{ 0.36959949 0.9600[ 0.35481551| 0.14324442 1.4749743
0.25( 0.43431334 0.9375] 0.40716876] 0.19559767 1.3858852
0.30f 0.51607311 0.9100{ 0.46962653| 0.25805544 1.3111651
0.35) 0.62111632 0.8775] 0.54502957[ 0.33345848 1.2456374
0.40{ 0.75871419 0.8400f 0.63731992| 0.42574882 1.1862311
0.45 0.94308233 0.7975] 0.75210816] 0.54053706 1.1309279
0.50 1.1968268 0.7500| 0.89762013| 0.68604904 1.0782736
0.55 1.5574892 0.6975 1.0863487| 0.87477763 1.0271183
0.60 2.0907704 0.6400 1.3380931 1.126522 0.97645462
0.65 2.9193504 0.5775 1.6859248 1.4743537 0.92529382
0.70 4.2919356 0.5100 2.1888871 1.9773161 0.87253887
0.75 6.770275 0.4375 2.9619953 2.7504242 0.81680815
0.80 11.827184 0.3600 4.2577861 4.046215 0.7561191
0.85 24.278854 0.2775 6.737382 6.5258109 0.6871841
0.90 66.904654 0.1900 12.711884 12.500313 0.60341461
0.95 378.46988 0.0975 36.900813 36.689242 0.48651054
238

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



In practice, p can be replaced by a consistent estimator, 7 :

ﬁ= c=li=lj;|éiJc (245)

and the optimal window width can then be calculated from (241)and (242). A com-
puter program is available from the author for exact calculation of ®(p). Alternately.
the appropriate value from Table 4.3 could be used to determine 7 and plugged into
(243).

For the case of unbalanced clusters, we can replace [k]% in (241) with [E] % where

k= Z(%)z (246)

It is easy to ascertain that k = % when clusters are balanced.

Fan and Marron (1992) posit that higher-order kernels have not seen much use
in application because of the unclear meaning of negative weights which higher-order
kernels give to some data points and because the gains from using higher-order kernels
are negligible for most sample sizes. In the case of clustering, however, higher-order
kernels provide a simple way to solve for the optimal window width and allow for

kernel density estimation which is easy to implement and is similar to the i.i.d. case.
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4.3.1 Numerical Properties of h.,:: Clustered Sampling

What are the gains in efficdency from using the optimal window width. hopt, of (241)?

We can compare the mean squared error of f(y) using h,; with two possible alter-

O
.

natives, h* = 1.060n~% and h™ = cn—5. h° is the optimal window width for the
univariate density estimation problem when the underlying density is normal and

the kernel is Gaussian. h** is the optimal window width in the i.i.d. case when a

4th-order kermel is used. We will set
c=14

which is the optimal proportionality constant given the kernel of (236) and a true.
underlying distribution that is normal (but ignoring, of course, the dependence in the
data.)!®

The AIMSE is calculated upto O(7;) using the kernel in (236), the standardized
bivariate normal distribution, and the three window widths, Aoy, h*, and h**. The

AIMSE uptoO(%) will be
AIMSE——/K"(wdw+—a“/{(1— *)67(,2) = (9(2))*} d=

+—04/{(1 ¢1111(~s~) — " ()¢ )}d" (247)
)—Lr

¥y general, for an r-th order kernel, h** = (—-’-m'ﬁ
Ao = fv K2(w)dy. A1y = 7- for this density.

~F4T where A, = 12 [ (f7(z))? dr and
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Specifying a reference distribution allows exact calculation of the approximate inte-
grated mean squared error. Results are given in Table 1.5.

hopt outperforms both ~A* and A** in the integrated mean squared error sensenot
surprising given that it is chosen to minimize the AIMSE. The last two columns of
Table 4.5 show that the gains in approximate IMSE calculated from (247) are quite
substantial when compared to hA*—generally on the order of 50%. The gains from
using hop: compared to hA*™ are somewhat smaller, but using hopt provides a lower
mean squared error. The gains in integrated mean squared error in this case mav be

even greater depending upon the values of n and k& chosen.
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.05
.10
15
.20
25
.30
.35
.40
.45
.50
.55
.60
.65
.70
75
.80
.85
.90
.95

1.486
1.275
1.157
1.075
1.010
0.956
0.908
0.865
0.824
0.786
0.749
0.712
0.675
0.636
0.595
0.551
0.501
0.440
0.355

h* =

L060m™$
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663
0.2663

h xk _

L44on’™™
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686
0.6686

Table 4.5
Difference in IMSE between h,,. and h* and h**

IMSE
(hop)
0.000643
0.000795
0.000911
0.001004
0.001082
0.001145
0.001194
0.001230
0.001253
0.001262
0.001258
0.001239
0.001204
0.001154
0.001088
0.001006
0.000912
0.000824
0.000827

n=1000, k=100, average cluster size=10, s=1
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IMSE
(h*)
0.002643
0.002700
0.002747
0.002784
0.002811
0.002825
0.002828
0.002817
0.002792
0.002751
0.002693
0.002615
0.002516
0.002391
0.002236
0.002044
0.001805
0.001503
0.001140

242

IMSE
(h**)
0.001097
0.001159
0.001213
0.001257
0.001292
0.001317
0.001331
0.001335
0.001329
0.001312
0.001284
0.001247
0.001204
0.001161
0.001132
0.001150
0.001313
0.001981
0.005544

IMSE (h,,)

IMSE(h,,)

IMSE(h*)

0.243260
0.294566
0.331480
0.360763
0.384895
0.405131
0.422223
0.436661
0.448786
0.458852
0.467057
0.473589
0.478679
0.482718
0.486536
0.492192
0.505621
0.548011
0.726027

IMSE(h**)
0.586081
0.686057
0.750947
0.799154
0.837503
0.869422
0.896890
0.921129
0.942859
0.962372
0.979417
0.992858
0.999836
0.993924
0.961323
0.874860
0.694891
0.415765
0.149258



Figures 4.17 through 4.19 provide an illustration of the difference in density esti-
mates from using h,,; as opposed to hA*. A detailed simulation study was conducted
by the author and the results are given here for three values p from .2 to .6.

The see how the simulation was conducted, first re-write the model to capture

assumptions (217) as follows:
Yei = 1+ Uc +&ci (248)

where u."D(0, 62) is an effect common to all elements in cluster ¢ and gei D(0.02)
is an idiosyncratic error term with cov(u,, €c) =0 for all i=1,. . ., n and =1, .
- - k. The element variance will then be 02 + 62, and the intra-cluster correlation
coefficient p will equal 3?'5?,2‘ Data was chosen in repeated simulation from a normal
distribution for both the cluster-specific and the idiosyncratic errors. o2 and o2 were
fixed so that the total element variance equals one. This allows data with different
degrees of correlation to be generated using any simple random number generating
method. For the simulation, the cluster size was set at 500 and the total sample size
at 10,000. (Thus for each simulation, 10,000 numbers were drawn from a N (0, o%)
and 500 from a N(0,672). All elements in the same cluster share the same draw of the
cluster-specific error term.) Average cluster size is 20 and since clusters were chosen
to be balanced, the clusters are all the same size.

Figures 4.17 through 4.19 are typical realizations of this simulation exercise. The
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density estimates using h* tend to under-smooth the data as can be seen by the
spurious variation in the density estimates. The standard normal distribution (the
marginal distribution of the true density) is shown for reference.

For cluster data with values of p greater than .15, the suggested kernel (236) and
hopt (241) perform very well in simulation. For small values of p this combination tends
to over-smooth the data, and it is probably best to use the second-order Gaussian
kernel and the usual window width. This needs further investigation.

The above kernel and optimal window width give a method for applying kernel
density estimation for clustered data in a way that takes into account the dependence
in the data. Asin thei.i.d. case with a second-order kernel, the optimal window width
is proportional to n‘ﬁ, however a different proportionality constant is now required
to minimize the ATIMSE. This optimal window width and fourth-order kernel perform

well for the levels of correlation commonly found in cross-sectional. survey data.
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4.4 Conclusion

Non-parametric density estimation is a useful tool to provide a visual image of the
economic data under consideration. The use of non-parametric techniques has spread
widely in econometric analysis in the past decade. Much of the analysis has been
conducted using data gathered in surveys. As we have seen in this section. ignorning
the stratification and clustering in the data can lead to biased and inefficient density
estimation. These same results will carry over to the regression case. Exploring the
exact nature of the problem for non-parametric regression is a promising area of future
work.

Here, for the density estimation case, we have shown why the usual optimal win-
dow width will no longer be optimal and we have suggested data-based methods for
choosing a new optimal window width for the case of stratification and for the case
of clustering. In addition, we have proposed a weighted, non-parametric density es-
timator for the case of unequal probability, stratified sampling. Through simulation
we have shown the huge bias which may result from ignoring the stratified nature of
the data.

For non-parametric density estimation, when data is both stratified and clustered,
the results of sections 4.2 and 4.3 need to be combined. For approximately normal
data in the case of stratified and clustered sampling, we can estimate each stratum

separately, using a fourth order kernel with appropriate modification to the window
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width (213) for the ith stratum

) —l/5
he=7(p) (2) (219)
where
_ 167 1% 3 \7%
"=[WJ (“"P"m) : (250)

Values of & for different p are given in section 4.3. p may be estimated using (70) and
is generally assumed to be constant for all clusters in the sample, following the same

methodology presented for dealing with clustered data throughout this paper.
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Appendix A

In order to derive the results given in Proposition 3.1 we first introduce. in matrix

notation,

(i)

n—1
4 1 %
= =0 (i)

where u is an n x 1 vector of u; satisfying (2.2), e is an n x 1 vector of unit elements

and
ee’

M=1-= (i)

n

is an n X n idempotent matrix with tr (M) = n - 1. Then from (2.1) and (2.4)

Expanding the right hand side we get
0~0=Ff—1p+fi+Ffap (v)
where, denoting f_. as a term of O,(n™")
w 20
f- = — ——a vi
1/2 2z % (vi)
2 _ 36,
fa1 = ——wu + ;;u
Jwu? 49%°
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Thus, the bias of  to O (n™!) is given,
Bias (§) = E (f-13) + E (f-1) (vi)
Now we state the following results:

62 E[WBu] =trB (viii)

0~ E[u'Buu] = v (I * B)e (ix)

o~ E['Buuv] = ~(I + B) + (¢rB)I + 2B
07° E{t/Auv/Bu.u] = (I *A*Be+ [(t7rA+2A)

(I *B)e + (trB +2B)(I * A)e + (I x AB)e]

07° E[WAuv/Buur] = ([ * AxB)+ [tr(A * B)I + tr A(I x B)
+trB(I x A) + 4(I « AB) +2A(I = B) +
+2B(I % A) + 2(I * B)A +2(I « A)B] + v*[4(A * B)
+(I * A)ee'(I * B) + (I « B)ee'(I * A)
+2I « {A(T * B)}ee’ +2I  {B(I + A)}ee’]
+2(tr A)B +4AB +2(tr B)A+ 1BA
+[2(tr AB) + tr(A) tr(B)]I.

where A and B are n x n symmetric matrixes with non-stochastic elements—see, e.g.

Ullah et. al. (1984, p. 398).
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Using (i), (ii), (viii), and (ix) it is easy to see that

Ef 12 = 0 (xd)

1
Ef_, ;93/2(391/2 —27v)

which, when substituted in (vii) gives the result in Proposition 3.1.

To obtaining the result in Proposition 3.2, we write, from (v), upto O(n~2),
E@ —8)’=E f2,+ Ef%, + 2Ef 1 sf 32 + 2Ef 1 pf 1. (xii)
It is easy to verify that

pd

n

Efil/z

I

92(1’;4- 2 )—495/’34-
n n—1 n

Ele +2Ef—l/2 f4/2 = —n’2 (lo‘yzn — + — _ gwl/ﬂvl + 750 + 207? (n =
95/3 n n
2 = 7 (149  d — 19 )
Ef—l/z.f—-l nz (149 Y2 (n — 1) ¥z 16‘yl — 1 M

To prove the result in Proposition 3.3, it is necessary to expand the sample skew-
ness coefficient as well as the coefficient of variation squared. Lettingv =0 —pu =
152 ~ 4 and

NN =9g-12+9g-1+g-3/ (xiv)

the mean squared error of 4 is

MSE(f) = MSE(f)+ % {96* + 46°+2 - 127,67/}
6 4
—;9E (9f-1/z +6f 1+ 29f31/2) — ,—193/2‘715' (f-:/z + f—l) (xxv)
S _dpn (l)
0" NEf 1/ n93 Ef1pg-13+o0 =
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and

w 20u| (v 3Jwyus .
reneef3-2E
which upto O(n™1), gives
6 60 293 36 39 363
Ef 1\pg-1z2=—-1+—m — Y2 —NY — 7+ _‘Yf (xcvii)
n n n n n—1

Proposition 3.3 follows from straightforward algebra.
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Appendix B
To calculate the variance of 3; = 1 S y2, we first write
Var(3z) = E(B2 — EB,)®. (xviii)
Using y; = p + u;,

-~ 1 2
E3 = ;LEZ%
1 n
= “EY (p+w)
n =

—lev eyl S g e ;
= nﬁ'gﬂ +n“ZE“'+nEZ“i (xix)

=1 i=1

= u®+o
We note that this result holds for the case of random sampling with replacement.
random sampling without replacement, and cluster sampling, since in all of those

cases we assume that the data share a common mean and that the expected value of

the error term is zero.

We thus have
Var(B:) = E(B; —p? —o?)?
= E(B)* + (1 + 0% - 2E(B,) (4* + o) (3xx)
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Since E(3;) = u? + o2, this yields
Var(B;) = E(3:)? — (u* + 0%)%. (x)

To solve for the expected value of 32, write

E(3) = E(%i(/—“"ui)z)
e Eee)

1 1 n n
= ;EZ (v +w)* + ?EZZ (b +w)? (1 +w;)?

1 i=1j=1
17
which can be expanded to give
- ) .
E(3:)* = 552 (.l-t4 + uf + 4ptu; + dpud + G,uzuf)
i=1
1o, 22 2,3, 1 9,3,
+n2EZZ(,u + uju; + 2p7w + 2u°y; (xxiii)
=1 j=1
i)

+4u2u;u,- + 2p.ufu,~ + 2;1.u,~u]2~ + /J,zuf + ,uzuf) .

In the most general form, we can evaluate these expressions and write the following

A 4 3 4 4 0,3 6 2.2
E(ﬁz)z — /‘L_+(72+ )6 + HN + Lo
n n n n
4 2 20.2
+%(n— 1) + £ (n—-1) (xxiv)
4{n—-1 1
'*'% [/-‘20’12 + poz + 10'1122 .
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For the case of RSWR, the last line will be zero, and we have

4 4 2,2
- +3)eo duvie® 6ule
Varrswa(ds) = *“ + (e +3)e! | Apmo® | Bu (xoev)
n n n n
4 2 2,.2
+E(n-1)+E T (n 1) - (4* + o)
n n
which reduces to the expression in equation (102)
- 1
Vargswr(Bs) = ~ [(1a +2)0* + 4umo® + 4707 . (roxvi)
When the sampling is without replacement,
o1z = —
2 = N o D
il (socvii)

ouz = (N-1)
N — +3
Olizz = ——_(N(Zzl) )o"‘

and then we can show that

(‘Y'.’.+3)o'"_+_Nn,—N+(‘yz+3)—n,(‘y2+3)—Nn+n”4

Vm'RsWOR(Ez) = " n(N —1)

40t 4o (1-n)
+ ~ + n (N-1) o)

dumo®  dumo® (1-n)

T YT oy

which after simplification gives

- +3)ot (N —

Vargswor(52) (2 +3)ot( n) (sexix)

(N-1)
4ul6? (N —n)  duye® (N - n)
n N-1) T n (NZ1)
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The finite population correction is this case is the same as the fpc for the mean case,
and we can write the variance of 33 for the RSWOR case in terms of the variance in

the sampling with replacement case as

(N =n)

VarRSWOR(BZ) = Vm‘nswn(/%)m.

For the case of clustered data, we need to re-write equation (xxiii) as

- 1 C M.
E(B) = —ESS (b +uk+ iu + 4 + 672
c=1i=1

C C M. M,

EZZZZ (/‘L +uc1. s_7+r)l“ u +"‘/‘L us:l (X)C{i)

c=1 s=1 i=] j=I1
i#j for c=s

+4/,¢2uc,-usj +2pudu,; + 2uua-u§j + ,uzuij + ,uzuf,-) .

But we note that we can further divide this second summation into terms within

the same cluster (of which there are n (H - 1))

c M. M.
E 3% (/.z + udud + 26uy + 24lu; (i)

c=1 i=1 j=1
1%

+4p2ua-ucj + 2/.Lu3iucj + 2,uuc,-u§j + u? u;"j + ,uzuf_‘-)

and terms in different clusters (of which there are n? — nM)

C C M. M,

+— EZZZZ(/L +uc1 SJ+9/.L ucn+9#' usg (xx}dﬁ)

c=1 s=1 i=1 5=1

cH#Es
+4/.L2uc,-u3,- + Zuu‘fiusJ .../J,u,,.,uSJ + u? u 4 piu )

We can then evaluate these expressions using the assumptions of (167) and (168).
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Thus for the case of clustered data we will have

4 4 2.2

+3)o* duvic® 6ule
o, (rt3) L e 6
n n n

4 2 M —
+%(H—1)+¥(2\7—1)+<M—”

_ yr
PELCZED VI 75 g VI
n n

Varaus(Bs) =

1122w (X’CGV)

112,w 12w

2

1 __ 2 __ 4 _
+E-(n-320) + “n"z(n—M)+%(n—M)

n

— (1 + %)%

One additional algebraic manipulation gives

% [(‘yz +3- H) ot + duv0® + 4/.420’2J

+4(A_/I— 1)

n

Varclust (32) =

1
[Idllzz.w + ponzw + ﬂzdlz.wJ . (socxv)

We also promised to provide the C’av(/?z, 7). We first write

Cov(3,5) = E (32 - Eﬁz) (v — Ey)

- E(%zzg_m-f) (—:;Z.r{—-y). (socxvi)

Expanding this term
- 1 -~
Cov(fs,y) = FEZ (#3 +ud + 3w + Suu?)
i=1
l n n
+—E 35 [,u3 + pu? + wlu; + 2pPu; + P, + 2,uu,~u,—]
i=1 j=1
i
e + ) —

—
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and evaluating the expectations

Cov(B2,7) = rlL {#* +me® +3u0?} + 1;—1 (¥ +uc®}

n—1

+ {2po1z + 0112} — 4 — po. (coceviii)

n

When the sampling is with replacement o3 = ;2 = 0. so this reduces to the

term in equation (103)
- 1 .
Covgrswr(32,7) = - [0'3‘71 + 2/-40’2] ' (ix1)

and when the sampling is without replacement it is simple to show that

~ >y +2u0? (N — 5 —n
Covrswor(fa,7) = —2 :‘)ﬂo S\Vf — ;L)) = Covgswr(/3, ZU)'((x__rl%- (x1)

For the case of clustered sampling (with replacement), we first note that the

following equalities will bold under the assumptions (167) and (168)

n n
E ZZ wv, = n(n-— 1)oy12
k=11=1
k3l
c n n
= FE ZZ uliug; (xLi)
e=1s=1 i=] j=1

i#j for c=s

C n n
= EZZZ u:iucj = n,(H - 1)0'112.w
c=1 i=1 j=1

i)

and
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n n
EZZukul = n(n—l)dlz
k=kl;£l=l
C C n n
= EYL3 3D et (<t
c=1 s=1 i=] j=I1
i#j for c=s

C n n
= EZZZ UeilUc; = R(H - I)O'Iz'w.

=l i=1 j=1

175
Substituting these into (xocoxvii) gives
53 = 1,3 3 2 n—1y¢34 2
CoVepyst(2,7) = —{u + o + Juo }+—{u + po }
n n
M-1
+ (210120 + 1120} — 1 — po?. (xliii)

n

We can simplify this expression to give

~ o 2uc® M-1
Cavdust(ﬂ% y) = n + a +

[2#0’12,1» + oy lz.w] . (xliv)
n n n

Combining these results gives the variance of the coefficient of variation under

clustered sampling.
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IMAGE EVALUATION
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